Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 96(5): 760, 2012 May.
Article in English | MEDLINE | ID: mdl-30727557

ABSTRACT

From 2008 to 2010, leaf spot symptoms were observed on tomato (Solanum lycopersicum Mill.) plants growing in the northern, central and southern highland regions of Tanzania. Symptoms were dark, circular to irregular, water-soaked spots surrounded by chlorotic halos. A total of 136 yellow-pigmented, gram-negative bacteria were isolated from 117 symptomatic plants on nutrient agar. Loopfuls from 24-h-old bacterial cultures were suspended in 500 µl of sterile distilled water and 50 µl of the suspensions were printed on strips of 3MM Whatman chromatography paper. Isolates belonging to the genus Xanthomonas were subsequently identified by PCR amplification of a 402-bp fragment of the Xanthan synthesis pathway gene, gumD (primers: X-gumD-fw 5'GGCCGCGAGTTCTACATGTTCAA and X-gumD-rv 5'CACGATGATGCGGATATCCAGCCACAA). Thirty of the 136 isolates reacted positively in gumD PCR. Pathogenicity of the 30 gumD-positive isolates was confirmed by spraying cell suspensions containing 108 CFU/ml (OD600 = 0.01) of each isolate on four 14-day-old tomato seedlings (cv. Tanya) and sweet pepper (Capsicum annuum L.) cv. Early-Calwonder in a growth chamber at 28 ± 2°C and maintained under humid conditions. Plants sprayed with X. euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri (2) strains NCPPB 2968, 422, 4321, and 881, respectively, served as positive controls. Plants sprayed with sterile distilled water alone served as negative control. The 30 tested isolates were pathogenic on tomato and pepper within 7 to 14 days and induced similar symptoms as those observed on tomato field plants and plants sprayed with reference strains of xanthomonads. Symptoms were not observed on negative control plants. Yellow-pigmented colonies were reisolated from symptomatic plants and their identity confirmed with GumD-PCR. Based on partial sequencing of the fyuA gene using primers developed by Young et al. (4), all 30 isolates were subsequently grouped into five clusters of the genus Xanthomonas. With recent taxonomy of Xanthomonas (2,4), four of these clusters displayed more than 99% sequence identity to known species of Xanthomonas: X. arboricola EU498923 (18 isolates); X. perforans EU498944 (6 isolates), X. vesicatoria EU498876 (2 isolates), and X. euvesicatoria EU498912 (1 isolate). The remaining three isolates formed a fifth cluster displaying less than 94% sequence identity to any known sequence of fyuA (93% matching strains: X. axonopodis EU498914; X. melonis EU498918, and X. cucurbitae EU498891). Representative sequences for each of the five clusters of bacterial leaf spot (BLS) strains mentioned have been deposited in GenBank (Nos. JQ418487, JQ418488, JQ418489, JQ418490, and JQ418491, respectively). BLS of tomato plants and its economic impact has been reported in Tanzania (3). Different BLS causal agents have recently been reported from the Southwest Indian Ocean Region (1), however, corresponding information for Tanzania has been lacking. On the basis of fyuA sequences, this study reports four genotypes of BLS causal agents corresponding to known species of Xanthomonas. In addition, Xanthomonas isolates with a fyuA genotype not previously assigned to any known species has been identified as part of the BLS pathosystem in Tanzania. References: (1) A. A. Hamza et al. Plant Dis. 94:993, 2010. (2) B. J. Jones et al. Syst. Appl. Microbiol. 27:755, 2004. (3) K. C. Shenge et al. Afr. J. Biotechnol. 6:15, 2007. (4) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.

2.
Plant Dis ; 91(4): 462, 2007 Apr.
Article in English | MEDLINE | ID: mdl-30781201

ABSTRACT

In April 2004, there was a serious outbreak of a tomato (Lypersicon esculentum Mill.) leaf spot disease in Mgeta, Mvomero District of Tanzania. The disease was characterized by lesions on green tomato fruits that were small, sunken, and black and were surrounded by darker green haloes. Lesions on ripe tomato fruits were dark brown to black, superficial, and measured approximately 1 to 2 mm in diameter. On the leaves, lesions were small, black, and surrounded by chlorotic (yellow) haloes. In some cases, the specks coalesced to form large lesions on older leaves. Black lesions were also observed on stems and petioles. A disease survey of selected tomato-producing areas in Arusha, Dodoma, Iringa, and Morogoro regions of Tanzania during 2004 and 2005 revealed that the disease was widespread in farmers' fields in all areas surveyed. Disease incidence was approximately 80%, while severity, rated on the scale of Chambers and Merriman (1), ranged from moderate (11 to 40 lesions per plant) to severe (>40 lesions per plant). A bacterium that produced a greenish, diffusible pigment on King's medium B was consistently isolated from lesions on tomato fruits collected from the fields in all the surveyed areas. All 56 isolates obtained were gram negative, oxidase negative, and fluoresced on King's medium B under UV light. None utilized phenylethylamine as the sole carbon source, while three isolates utilized i-erythritol and lactulose. Biolog analysis of the isolates, along with two reference strains of P. syringae pv. tomato (Pst CEP-3 from Sokoine University of Agriculture, Tanzania and Pst BB6 [Race 1] from Göttinger Sammlung Phytopathogener Bakterien, Göttingen, Germany) identified them as P. syringae pv. tomato, with similarity indices of 0.518 to 0.933. They also were positively identified as P. syringae pv. tomato by repetitive sequence-based-PCR (2,3) and fragment length polymorphism analysis. Pathogenicity of the strains was confirmed by spraying 35-day-old tomato seedlings (cv. Tanya) with suspensions of the isolates at a concentration of 108 CFU ml-1 of sterile water. After approximately 72 h, small, water-soaked, dark brown lesions similar to those observed on the field plants were observed on leaves of all the inoculated tomato seedlings. There were no symptoms on control plants. The bacterium was reisolated from the infected plants and identified as P. syringae pv. tomato, in accordance with Koch's postulates. To our knowledge, this is the first report of the occurrence of tomato bacterial speck in Tanzania. References: (1). S. C. Chambers and P. R. Merriman. Aust. J. Agric. Res. 26:657, 1975. (2). F. J. Louws et al. Appl. Environ. Microbiol. 60:2286, 1994. (3). M. Zaccardelli et al. Eur. J. Plant Pathol. 111:85, 2005.

SELECTION OF CITATIONS
SEARCH DETAIL
...