Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(26): 18343-18354, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38915881

ABSTRACT

This work implements computational chemistry as a screening tool to aid in the coating and resin formulation process. Conceptual Density Functional theory (DFT) reactivity descriptors like the global chemical hardness and the dual descriptor Fukui function identify the tendency of polyester-melamine coatings to undergo electrophilic and nucleophilic attack during weathering exposure. Coatings were subjected to natural and accelerated weathering tests, with periodic infrared spectroscopy, colour, and gloss measurements to assess for the degree of changes brought about through photodegradation. It was found that the number of attack sites in the atomistic models, when weighted as a function of the polyester : crosslinker ratio, effectively ranked the degradation of different coating systems upon weathering. This ranking matched the performance of the coatings subjected to both accelerated and natural weathering, showing affinity with naturally weathered samples, and matching in all areas. The results were shown to demonstrate significant correlation, being over R 2 = 0.8 for 7 of the 8 measured areas, and greater than R 2 = 0.9 for 6 compared areas. Comparison of computationally derived and experimentally acquired results showed that the performance of naturally weathered samples was matched across all areas by the computational rankings, showing superior correlation than that observed between natural and accelerated weathering tests. This indicates that the method utilised within this work provides a novel, cost-effective alternative to evaluate the projected performance of selected coatings, while enabling a computationally accelerated platform for more sustainable low-degradation coatings without the requirement of long-term weathering tests.

2.
iScience ; 26(4): 106549, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37123246

ABSTRACT

A transition from a linear to a circular economy is the only alternative to reduce current pressures in natural resources. Our society must redefine our material sources, rethink our supply chains, improve our waste management, and redesign materials and products. Valorizing extensively available biomass wastes, as new carbon mines, and developing biobased materials that mimic nature's efficiency and wasteless procedures are the most promising avenues to achieve technical solutions for the global challenges ahead. Advances in materials processing, and characterization, as well as the rise of artificial intelligence, and machine learning, are supporting this transition to a new materials' mining. Location, cultural, and social aspects are also factors to consider. This perspective discusses new alternatives for carbon mining in biomass wastes, the valorization of biomass using available processing techniques, and the implementation of computational modeling, artificial intelligence, and machine learning to accelerate material's development and process engineering.

3.
Chemosphere ; 308(Pt 2): 136297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36064026

ABSTRACT

The continuous rise in the amount of industrial and pharmaceutical waste in water sources is an alarming concern. Effective strategies should be developed for the treatment of pharmaceutical industrial waste. Hence the alternative renewable source of energy, such as solar energy, should be utilized for a sustainable future. Herein, a series of Au plasmonic nanoparticle decorated ternary photocatalysts comprising graphitic carbon nitride and Ti3C2 MXene has been designed to degrade colourless pharmaceutical pollutants, cefixime under visible light irradiation. These photocatalysts were synthesized by varying the amount of Ti3C2 MXene, and their catalytic potential was explored. The optimized photocatalyst having 3 wt% Ti3C2 MXene achieved 64.69% removal of the pharmaceutical pollutant, cefixime within 105 min of exposure to visible light. The presence of the Au nanoparticles and MXene in the nanocomposite facilitates the excellent charge carrier separation and increased the number of active sites due to the formation of interfacial contact with graphitic carbon nitride nanosheets. Besides, the plasmonic effect of the Au nanoparticles improves the absorption of light causing enhanced photocatalytic performance of the nanocomposite. Based on the obtained results, a plausible mechanism has been formulated to understand the contribution of different components in photocatalytic activity. In addition, the optimized photocatalyst shows excellent activity and can be reused for up to three cycles without any significant loss in its photocatalytic performance. Overall, the current work provides deeper physical insight into the future development of MXene graphitic carbon nitride-based plasmonic ternary photocatalysts.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Cefixime , Gold , Graphite , Industrial Waste , Metal Nanoparticles/chemistry , Nitrogen Compounds , Pharmaceutical Preparations , Water
4.
Gates Open Res ; 6: 96, 2022.
Article in English | MEDLINE | ID: mdl-37564326

ABSTRACT

Background: The dumping of untreated faecal sludge from non-sewered onsite sanitation facilities causes environmental pollution and exacerbates poor public health outcomes across developing nations. Long-term mechanisms to treat faecal sludge generated from these facilities are needed to resolve the global sanitation crisis and realize the Sustainable Development Goal (SDG) 6 "ensure availability and sustainable management of water and sanitation for all" by 2030.  Pyrolysis of faecal sludge removes pathogens and generates biochar, which can be used as a soil enhancer. Methods: The properties of faecal sludge biochars from three full-scale treatment plants in India were determined via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray (EDX) spectroscopy, crystal x-ray diffraction (XRD), proximate analyses, and BET surface area porosimetry. Results:  Results showed that all three biochars had low specific surface area, high alkaline pH values, high ash content, and negative surface charge. Fourier transform infrared spectra showed the same surface functional groups present in each biochar. X-ray diffraction analysis showed the mineral composition of each biochar differed slightly. Scanning electron microscopy analysis indicated a porous structure of each biochar with ash particles evident. Conclusions: Slight differences in the ash content, surface area, pH and mineral content was observed between the three biochars.

5.
J Environ Manage ; 261: 110267, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148321

ABSTRACT

Drying is one of the treatment techniques used for the dual purpose of safe disposal and energy recovery of faecal sludge (FS). Limited data are available regarding the FS drying process. In this paper the drying properties of FS were investigated using samples from ventilated improved pit (VIP) latrines and urine diversion dry toilets (UDDT) and an anaerobic baffle reactor (ABR) from a decentralized wastewater treatment systems. Moisture content, total solids content, volatile solids content, water activity, coupled thermogravimetry & differential thermal analysis (TGA-DTA) and calorific value tests were used to characterize FS drying. Drying kinetics and water activity measured at different moisture content during drying (100 °C) were similar for the samples from different on-site sanitation facilities. Experimental heat of drying results revealed that FS requires two to three times that of the latent heat of vaporization of water for drying. Drying temperature was more significant than the sludge source in determining the final volatile solids content of the dried samples. This was reinforced by the dynamic TGA that showed considerable thermal degradation (2-11% dry solid mass) near 200 °C. Below 200 C, the calorific value of the dried samples exhibited no significant difference. The average calorific values of VIP, UDDT and ABR samples at 100 °C were 14.78, 15.70, 17.26 MJ/kg dry solid, respectively. This suggests that the fuel value of FS from the aforementioned sanitation facilities will not be significantly affected by drying temperature below 200 °C. Based on this study, the most suitable temperature for drying of FS for a solid fuel application was found to be 150 °C.


Subject(s)
Sanitation , Sewage , Desiccation , Feces , Wastewater
6.
Org Biomol Chem ; 7(12): 2559-64, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503930

ABSTRACT

Mesoporous aluminosilicates efficiently catalyze the ring-opening of epoxides to produce beta-alkoxyalcohols in high yields under extremely mild reaction conditions. These materials also catalyze the corresponding Meinwald rearrangement in non-nucleophilic solvents to give aldehydes which can be trapped in situ to provide the corresponding acetals in an efficient tandem process.

SELECTION OF CITATIONS
SEARCH DETAIL