Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 13(37): 4266-4279, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34591947

ABSTRACT

For practical applications, the development of bio-compatible organic molecules as p-block ion chemosensors is critical. Herein, we report the single crystal (SC) of new pyridine-pyrazole derived Al3+ sensor H2PPC [(Z)-N'-(2,3-dihydroxybenzylidene)-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazide] as well as its Cu-complex SC. The probe exhibits an "off-on" fluorescence response towards Al3+ ions, and this has been modulated with different solvents. For selective detection of Al3+ ions, a special coordination pocket in the structural backbone is advantageous. The chemosensor exhibits a submicromolar detection level (LOD = 4.78 µM) for Al3+. The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of H2PPC and [Al(HPP)2]+ (1) reveal that a change of the structural conformation of probe H2PPC upon complexation causes the pyrazole and pyridine units to create a specific cavity to tether Al3+, and consequently H2PPC proves to be a promising molecule for Al3+ detection. Furthermore, the probe has been successfully used to evaluate Al3+ as a low-cost kit using filter paper strips, and the in situ Al3+ ion imaging in Vero cells as well as A549 cell lines shows the sensor's nuclear envelope penetrability, indicating that it has great potential for biological and environmental applications.


Subject(s)
Fluorescent Dyes , Pyrazoles , Animals , Chlorocebus aethiops , Pyridines , Spectrometry, Fluorescence , Vero Cells
2.
J Phys Chem A ; 125(7): 1490-1504, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33565874

ABSTRACT

The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)-((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 µM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.

3.
Anal Sci Adv ; 2(9-10): 447-463, 2021 Oct.
Article in English | MEDLINE | ID: mdl-38716442

ABSTRACT

Counter anion-triggered metal ion detection has been rarely reported by fluorimetric method. To address this challenging issue, a fluorescent probe (H2L) has been synthesized from bromo-salicylaldehyde and hydrazine hydrate, and structurally characterized by single crystal X-ray diffraction. The probe shows very weak fluorescence itself. However, its emission intensity increases in the presence of Zn2+ over other metal ions. Surprisingly, the emission profile of this probe in presence of Zn2+ is augmented only when acetate anion (OAc¯) is present as counter anion, that allows for precise quantitative analysis by spectroscopic studies. The compositions and complexation among the probe, Zn2+ ion, and OAc¯ are supported by ESI-MS, 1H-NMR, and Job's plot. Based on these studies, it is confirmed that the binding ratio between probe: metal is 1:2 and the detection limit (LOD) for the Zn2+ is 2.18 µM. The probe is capable of recognizing Zn2+ ion in the wide range of pH∼6.5-9.5, and it could be efficiently recycled by EDTA. Furthermore, the combinatorial molecular logic gate and memory device have been constructed from the fluorescent behavior of H2L with Zn2+, OAc¯, and EDTA input as based on NOT and AND gates. Interestingly, the aggregation-induced emission (AIEE) phenomenon is also perceived with greater than 50% water content in organic water mixtures, which are then useful for the detection of picric acid often used as explosive.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 319-332, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31054496

ABSTRACT

A photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) regulated rhodamine-azobenzene chemosensor (L) was synthesized for chemoselective detection of Al3+, Cr3+, and Cu2+ by UV-Visible absorption study whereas Al3+ and Cr3+ by fluorimetric study in EtOH-H2O solvent. L showed a clear fluorescence emission enhancement of 21 and 16 fold upon addition of Al3+ and Cr3+ due to the 1:1 host-guest complexation, respectively. This is first report on rhodamine-azobenzene based Cr3+ chemosensor. The complex formation, restricted imine isomerization, inhibition of PET (photo-induced electron transfer) process with the concomitant opening of the spirolactam ring induced a turn-on fluorescence response. The higher binding constants 6.7 × 103 M-1 and 3.8 × 103 M-1 for Al3+ and Cr3+, respectively and lower detection limits 1 × 10-6 M and 2 × 10-6 M for Al3+ and Cr3+, respectively in a buffered solution with high reversible nature describes the potential of L as an effective tool for detecting Al3+ and Cr3+ in a biological system with higher intracellular resolution. Finally, L was used to map the intracellular concentration of Al3+ and Cr3+ in human lymphocyte cells (HLCs) at physiological pH very effectively. Altogether, our findings will pave the way for designing new chemosensors for multiple analytes and those chemosensors will be effective for cell imaging study.


Subject(s)
Aluminum/analysis , Azo Compounds/chemistry , Chromium/analysis , Copper/analysis , Lymphocytes/chemistry , Rhodamines/chemistry , Biosensing Techniques , Cations/analysis , Cells, Cultured , Fluorometry , Humans , Limit of Detection , Spectrophotometry, Ultraviolet
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 222-231, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30641362

ABSTRACT

A novel Schiff base L composed of fluorescein hydrazine and a phenol functionalized moiety has been designed and prepared via cost-effective condensation reaction. The L is utilized for selective sensing of Zn2+ over other environmental and biological relevant metal ions in aqueous alcoholic solution under physiological pH range. The binding of Zn2+ to the receptor L is found to causes ~23 fold fluorescence enhancement of L. The 1:1 binding mode of the metal complex is established by combined UV-Vis, fluorescence, and HRMS (high-resolution mass spectroscopy) spectroscopic methods. The binding constant (Ka) for complexation and the limit of detection (LOD) of Zn2+ is calculated to be 2.86 × 104 M-1 and 1.59 µM, respectively. Further photophysical investigations including steady-state, time-resolved fluorescence analysis and spectral investigations including NMR (nuclear magnetic resonance), IR (infrared spectroscopy) suggest introduction of CHEF (chelation enhance fluorescence) with the suppression of CN isomerization and PET (photo-induced electron transfer) mechanism for the strong fluorescent response towards Zn2+. Finally, the sensor L is successfully employed to monitor a real-time detection of Zn2+ by means of TLC (thin layer chromatography) based paper strip. The L is used in the cell imaging study using African green monkey kidney cells (Vero cells) for the determination of exogenous Zn2+ by Immunofluorescence Assay (IFA) process.


Subject(s)
Biosensing Techniques/methods , Fluorescein/chemistry , Imaging, Three-Dimensional , Schiff Bases/chemistry , Zinc/analysis , Animals , Cell Survival , Chlorocebus aethiops , Fluorescein/chemical synthesis , Hydrogen-Ion Concentration , Ligands , Luminescence , Schiff Bases/chemical synthesis , Solvents/chemistry , Spectrometry, Fluorescence , Time Factors , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...