Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 5(8): 9351-9360, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36034762

ABSTRACT

The goal of this work is to substitute the conventional high-cost poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in inverted perovskite solar cells (PSCs) with an efficient and conducting polyaniline (PANI) polymer. The reported use of PANI in PSCs involves a chemical synthesis method which is prone to contamination with impurities as it requires several materials for polymerization and adhesion improvement with substrates, contributing to low device efficiencies. This work mitigates this issue using an electrochemical method that is low cost, less time consuming, and capable of producing thin films of PANI with excellent adhesion to substrates. Results demonstrated that the power conversion efficiency of the electrochemically synthesized PANI-based PSC is 16.94% versus 15.11% for the PEDOT:PSS-based device. It was observed that the work function of PANI was lower compared to that of PEDOT:PSS which decreased V OC but enhanced hole extraction at the hole transport layer/perovskite interface, thus increasing J SC. Doping electrolyte solution with lithium bis(trifluoromethanesulfonyl)imide LiTFSI increased the work function of PANI, thus increasing V OC from 0.87 to 0.93 V. This method enables simple and scalable synthesis of PANI as a competitive hole transport material to replace rather expensive PEDOT:PSS, thus enabling an important step toward low-cost inverted perovskite photovoltaic devices.

2.
Article in English | MEDLINE | ID: mdl-35831209

ABSTRACT

The combination of organic ligands and inorganic Pb-I frameworks in layered perovskites has bestowed upon them high structural tunability and stability, while their microscopic degradation mechanism remains unclear. Here, we found the key role of ligands in intrinsic structural stability and the consequent morphological evolution in layered perovskites during long-term ambient aging based on (GA)(MA)nPbnI3n+1 (GA = guanidinium, = 4) and (BDA)(MA)n-1PbnI3n+1 (BDA = 1,4-butanediammonium, < n > = 4) perovskites. The BDA-based perovskites have a low intrinsic stability due to high crystal formation energy (ΔH), which are prone to hydration during ambient aging. We overserved changed crystal orientation from perpendicular to parallel, a delayed charge populating time from <1 ps to >50 ps, an inhibited carrier transfer kinetics between quantum wells, an increase of 0.9 µs of charge carrier transport time and a decrease of 1.2 µs of charge carrier lifetime in the BDA-based film during ambient aging, which accounts for a large power-conversion efficiency (PCE) loss (14.2% vs 11.2%). By contrast, the GA ligand increases the intrinsic structural stability of perovskites, which not only yields an initial PCE as high as 20.0% but also helps retain excellent optoelectronic properties during aging. Therefore, only a slight PCE loss (20.0% vs 19.1%) was observed. Our work reveals the key role of organic-inorganic interaction affecting the intrinsic structural stability and optoelectronic properties, and provides a theoretical basis for the future design of stable and efficient optoelectronic devices.

3.
ACS Appl Energy Mater ; 5(1): 648-657, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35098044

ABSTRACT

Solid-state lithium batteries are generally considered as the next-generation battery technology that benefits from inherent nonflammable solid electrolytes and safe harnessing of high-capacity lithium metal. Among various solid-electrolyte candidates, cubic garnet-type Li7La3Zr2O12 ceramics hold superiority due to their high ionic conductivity (10-3 to 10-4 S cm-1) and good chemical stability against lithium metal. However, practical deployment of solid-state batteries based on such garnet-type materials has been constrained by poor interfacing between lithium and garnet that displays high impedance and uneven current distribution. Herein, we propose a facile and effective strategy to significantly reduce this interfacial mismatch by modifying the surface of such garnet-type solid electrolyte with a thin layer of silicon nitride (Si3N4). This interfacial layer ensures an intimate contact with lithium due to its lithiophilic nature and formation of an intermediate lithium-metal alloy. The interfacial resistance experiences an exponential drop from 1197 to 84.5 Ω cm2. Lithium symmetrical cells with Si3N4-modified garnet exhibited low overpotential and long-term stable plating/stripping cycles at room temperature compared to bare garnet. Furthermore, a hybrid solid-state battery with Si3N4-modified garnet sandwiched between lithium metal anode and LiFePO4 cathode was demonstrated to operate with high cycling efficiency, excellent rate capability, and good electrochemical stability. This work represents a significant advancement toward use of garnet solid electrolytes in lithium metal batteries for the next-generation energy storage devices.

4.
Nanoscale ; 10(34): 15956-15966, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30132491

ABSTRACT

It has been a challenge to use transition metal oxides as anode materials in Li-ion batteries due to their low electronic conductivity, poor rate capability and large volume change during charge/discharge processes. Here, we present the first demonstration of a unique self-recovery of capacity in transition metal oxide anodes. This was achieved by reducing tungsten trioxide (WO3) via the incorporation of urea, followed by annealing in a nitrogen environment. The reduced WO3 successfully self-retained the Li-ion cell capacity after undergoing a sharp decrease upon cycling. Significantly, the reduced WO3 also exhibited excellent rate capability. The reduced WO3 exhibited an interesting cycling phenomenon where the capacity was significantly self-recovered after an initial sharp decrease. The quick self-recoveries of 193.21%, 179.19% and 166.38% for the reduced WO3 were observed at the 15th (521.59/457.41 mA h g-1), 36th (538.49/536.61 mA h g-1) and 45th (555.39/555.39 mA h g-1) cycles respectively compared to their respective preceding discharge capacity. This unique self-recovery phenomenon can be attributed to the lithium plating and conversion reaction which might be due to the activation of oxygen vacancies that act as defects which make the WO3 electrode more electrochemically reactive with cycling. The reduced WO3 exhibited a superior electrochemical performance with 959.1/638.9 mA h g-1 (1st cycle) and 558.68/550.23 mA h g-1 (100th cycle) vs. pristine WO3 with 670.16/403.79 mA h g-1 (1st cycle) and 236.53/234.39 mA h g-1 (100th cycle) at a current density of 100 mA g-1.

5.
ACS Appl Mater Interfaces ; 10(30): 25604-25613, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29986137

ABSTRACT

Perovskite solar cells (PSCs) typically exhibit hysteresis in current density-voltage ( J- V) measurements. The most common type of J- V hysteresis in PSCs is normal hysteresis, in which the performance in the reverse scan is better than that in the forward scan. However, inverted hysteresis also exists, in which the reverse scan performance is worse than in the forward scan; this hysteresis, however, is significantly less well studied. In this work, we show that the hysteresis decreases when the sweep rate is decreased only in cases involving a small bias range, and it does not decrease with a large bias range. Under large forward bias and slowing sweep rate, we observe enhanced normal hysteresis or inverted hysteresis in PSCs. Moreover, the degree of normal and inverted hysteresis can be adjusted by varying the bias. Here, we hypothesize that the tunable hysteresis is derived from the different distribution of ionic defects (VI and VMA) at the electron (hole) transport layer/perovskite interface due to ionic movement in the perovskite layer under the different bias scanning conditions. This conclusion is confirmed using Kelvin probe force microscopy with different bias voltages and scanning rates, which shows surface potential hysteresis based on ionic-migration-related Fermi level shifting in perovskite films and agrees with the tunable J- V hysteresis hypothesis. Moreover, the increased time response in the milliseconds region in open-circuit voltage decay after J- V scanning further corroborates the mechanism of ionic migration under bias. Our work provides new insights into the ionic movement hypothesis for the J- V hysteresis in PSCs.

6.
Nanoscale ; 8(5): 2693-703, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26758661

ABSTRACT

An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ∼600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s(-1). Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 µs and the longest charge carrier life time at 13.6 µs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.

SELECTION OF CITATIONS
SEARCH DETAIL
...