Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 5627-5636, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38275195

ABSTRACT

This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.


Subject(s)
Nanostructures , Titanium , Materials Testing , Titanium/pharmacology , Titanium/chemistry , Nanostructures/chemistry , Alloys/pharmacology , Alloys/chemistry
2.
Nano Lett ; 23(14): 6406-6413, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37436039

ABSTRACT

In this work, for the first time 3D Ti-Nb meshes of different composition, i.e., Ti, Ti-1Nb, Ti-5Nb, and Ti-10 Nb, were produced by direct ink writing. This additive manufacturing method allows tuning of the mesh composition by simple blending of pure Ti and Nb powders. The 3D meshes are extremely robust with a high compressive strength, giving potential use in photocatalytic flow-through systems. After successful wireless anodization of the 3D meshes toward Nb-doped TiO2 nanotube (TNT) layers using bipolar electrochemistry, they were employed for the first time for photocatalytic degradation of acetaldehyde in a flow-through reactor built based on ISO standards. Nb-doped TNT layers with low concentrations of Nb show superior photocatalytic performance compared with nondoped TNT layers due to the lower amount of recombination surface centers. High concentrations of Nb lead to an increased number of recombination centers within the TNT layers and reduce the photocatalytic degradation rates.

3.
ACS Appl Mater Interfaces ; 15(19): 23951-23962, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145973

ABSTRACT

Prussian blue analogues are considered as promising candidates for aqueous sodium-ion batteries providing a decently high energy density for stationary energy storage. However, suppose the operation of such materials under high-power conditions could be facilitated. In that case, their application might involve fast-response power grid stabilization and enable short-distance urban mobility due to fast re-charging. In this work, sodium nickel hexacyanoferrate thin-film electrodes are synthesized via a facile electrochemical deposition approach to form a model system for a robust investigation. Their fast-charging capability is systematically elaborated with regard to the electroactive material thickness in comparison to a ″traditional″ composite-type electrode. It is found that quasi-equilibrium kinetics allow extremely fast (dis)charging within a few seconds for sub-micron film thicknesses. Specifically, for a thickness below ≈ 500 nm, 90% of the capacity can be retained at a rate of 60C (1 min for full (dis)charge). A transition toward mass transport control is observed when further increasing the rate, with thicker films being dominated by this mode earlier than thinner films. This can be entirely attributed to the limiting effects of solid-state diffusion of Na+ within the electrode material. By presenting a PBA model cell yielding 25 Wh kg-1 at up to 10 kW kg-1, this work highlights a possible pathway toward the guided design of hybrid battery-supercapacitor systems. Furthermore, open challenges associated with thin-film electrodes are discussed, such as the role of parasitic side reactions, as well as increasing the mass loading.

4.
Small ; 19(32): e2300974, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066708

ABSTRACT

The success in lowering the nucleation delay for Atomic Layer Deposition (ALD) of Ru on carbon surfaces is mitigated by constructive pretreatments resulting enhancement of CO functionality. Treatment of the carbon papers (CP) allowed Ru species deposition for minimum number of ALD cycles (25 cycles) with good conformality. The development of electrocatalysts from single atoms to nanoparticles (NPs) on conductive supports with low metal loadings, thus improving performance, is essential in electrocatalysis. For alkaline hydrogen evolution reaction, ALD decorated CPs with Ru exhibit low onset potentials of ≈4.7 mV versus reversable hydrogen electrode (RHE) (at 10 mA cm-2 ) and a high turnover frequency of 1.92 H2 s-1 at 30 mV versus RHE. The Ru decorated CPs show comparable to higher catalytic activity than of Platinum (Pt) decorated CP also developed by ALD. The current representation of unfamiliar catalytic activities of Ru active centers developed by ALD, pave a bright and sustainable path for energy conversion reactions.

5.
ACS Appl Mater Interfaces ; 15(14): 18379-18390, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010878

ABSTRACT

Detection of visible light is a key component in material characterization techniques and often a key component of quality or purity control analyses for health and safety applications. Here in this work, to enable visible light detection at gigahertz frequencies, a planar microwave resonator is integrated with high aspect ratio TiO2 nanotube (TNT) layer-sensitized CdS coating using the atomic layer deposition (ALD) technique. This unique method of visible light detection with microwave-based sensing improves integration of the light detection devices with digital technology. The designed planar microwave resonator sensor was implemented and tested with resonant frequency between 8.2 and 8.4 GHz and a resonant amplitude between -15 and -25 dB, depending on the wavelength of the illuminated light illumination on the nanotubes. The ALD CdS coating sensitized the nanotubes in visible light up to ∼650 nm wavelengths, as characterized by visible spectroscopy. Furthermore, CdS-coated TNT layer integration with the planar resonator sensor allowed for development of a robust microwave sensing platform with improved sensitivity to green and red light (60 and 1300%, respectively) compared to the blank TNT layers. Moreover, the CdS coating of the TNT layer enhanced the sensor's response to light exposure and resulted in shorter recovery times once the light source was removed. Despite having a CdS coating, the sensor was capable of detecting blue and UV light; however, refining the sensitizing layer could potentially enhance its sensitivity to specific wavelengths of light in certain applications.

6.
ChemSusChem ; 16(11): e202300115, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36939153

ABSTRACT

2-dimensional FeSx nanosheets of different sizes are synthesized by applying different numbers of atomic layer deposition (ALD) cycles on TiO2 nanotube layers and graphite sheets as supporting materials and used as an electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical results confirm electrocatalytic activity in alkaline media with outstanding long-term stability (>65 h) and enhanced catalytic activity, reflected by a notable drop in the initial HER overpotential value (up to 26 %). By using a range of characterization techniques, the origin of the enhanced catalytic activity was found to be caused by the synergistic interplay between in situ morphological and compositional changes in the 2D FeSx nanosheets during HER. Under the application of a cathodic potential in alkaline media, the as-synthesized 2D FeSx nanosheets transformed into iron oxyhydroxide-iron oxysulfide core-shell nanoparticles, which exhibited a higher active catalytic surface and newly created Fe-based HER catalytic sites.


Subject(s)
Graphite , Nanoparticles , Catalysis , Electrodes , Hydrogen
7.
Photochem Photobiol Sci ; 22(4): 883-892, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36745319

ABSTRACT

This work deals with the preparation of TiO2 nanoparticulate layers of various mass (0.05 mg/cm2 to 2 mg/cm2) from three commercial nanopowder materials, P90, P25 and CG 300, their characterisation (profilometry, BET and SEM) and evaluation of their photocatalytic activity in the gaseous phase in a flow-through photoreactor according to the ISO standard (ISO 22197-2). Hexane was chosen as a single model pollutant and a mixture of four compounds, namely acetaldehyde, acetone, heptane and toluene was used for the evaluation of the efficiency of simultaneous removal of several pollutants. A linear dependence between the layer mass and the layer thickness for all materials was found. Up to a layer mass 0.5 mg/cm2, the immobilisation P90 and P25 powder did not result in a decrease in BET surface area, whereas with an increase in layer mass to 1 mg/cm2, a decrease of the BET surface was observed, being more significant in the case of P90. The photocatalytic conversion of hexane was comparable for all immobilised powders up to a layer mass of 0.5 mg/cm2. For higher layer mass, the photocatalytic conversion of hexane on P25 and P90 differ; the latter achieved about 30% higher conversion. In the case of the simultaneous degradation of four compounds, acetaldehyde was degraded best, followed by acetone and toluene; the least degraded compound was heptane. The measurement of released CO2 revealed that 90% of degraded hexane was mineralised to CO2 and water while for a mixture of 4 VOCs, the level of mineralisation was 83%.

8.
Aquat Toxicol ; 256: 106419, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36807021

ABSTRACT

Recently, more accessible transcriptomic approaches have provided a new and deeper understanding of environmental toxicity. The present study focuses on the transcriptomic profiles of green microalgae Chlamydomonas reinhardtii exposed to new industrially promising material, TiO2 nanotubes (NTs), as an example of a widely used one-dimensional nanomaterial. The first algal in vitro assay included 2.5 and 7.5 mg/L TiO2 NTs, resulting in a dose-dependent negative effect on biological endpoints. At a working concentration of 7.5 mg/L, RNA-sequencing showed a mainly negative effect on the cells. In summary, the results indicated metabolic disruption, such as ATP loss, damage to mitochondria and chloroplasts, loss of solutes due to permeated membranes, and cell wall damage. Moreover, apoptosis-induced transcripts were detected. Interestingly, reactivation of transposons was observed. In signalling and transcription pathways, including chromatin remodelling and locking, the annotated genes were downregulated.


Subject(s)
Chlamydomonas reinhardtii , Nanotubes , Water Pollutants, Chemical , Transcriptome , Water Pollutants, Chemical/toxicity
9.
Int J Nanomedicine ; 17: 4211-4225, 2022.
Article in English | MEDLINE | ID: mdl-36124012

ABSTRACT

Purpose: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. Methods: We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0-100 µg.mL-1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. Results: We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. Conclusion: We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.


Subject(s)
Nanoparticles , Serum Albumin, Bovine , A549 Cells , Glutathione , Humans , Lung , Metal Nanoparticles , Nanoparticles/chemistry , Oxidoreductases , Sodium Chloride , Titanium , Water
10.
Molecules ; 27(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889328

ABSTRACT

The immunoreactivity or/and stress response can be induced by nanomaterials' different properties, such as size, shape, etc. These effects are, however, not yet fully understood. This study aimed to clarify the effects of SiO2 nanofibers (SiO2NFs) on the cellular responses of THP-1-derived macrophage-like cells. The effects of SiO2NFs with different lengths on reactive oxygen species (ROS) and pro-inflammatory cytokines TNF-α and IL-1ß in THP-1 cells were evaluated. From the two tested lengths, it was only the L-SiO2NFs with a length ≈ 44 ± 22 µm that could induce ROS. Compared to this, only S-SiO2NFs with a length ≈ 14 ± 17 µm could enhance TNF-α and IL-1ß expression. Our results suggested that L-SiO2NFs disassembled by THP-1 cells produced ROS and that the inflammatory reaction was induced by the uptake of S-SiO2NFs by THP-1 cells. The F-actin staining results indicated that SiO2NFs induced cell motility and phagocytosis. There was no difference in cytotoxicity between L- and S-SiO2NFs. However, our results suggested that the lengths of SiO2NFs induced different cellular responses.


Subject(s)
Silicon Dioxide , Tumor Necrosis Factor-alpha , Cytokines/metabolism , Humans , Macrophages , Reactive Oxygen Species/metabolism , Silicon Dioxide/pharmacology , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
11.
Carbohydr Polym ; 294: 119792, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868761

ABSTRACT

The study investigates the use of fiber carriers, based on biopolymeric gums as potential candidates for cosmetic and dermatological applications, in particular for skin regeneration. Gum arabic (GA), xanthan gum (XA), and gum karaya (GK) were used as the main gum materials for the fibers, which were prepared by centrifugal spinning from an aqueous solution. These solutions of different mass gum ratios were blended with poly (ethylene oxide) (PEO) for better spinnability. Finally, vitamins E and C were added to selected solutions of gums. The resulting fibers were extensively investigated. The morphology and structure of all fibers were investigated by scanning electron microscopy and Fourier transformed infrared spectroscopy. Most importantly, they were characterized by the release of vitamin E loaded in the fibers using UV-VIS spectroscopy. The presentation will show that the newly prepared fibers from GA and PEO represent a very promising material for cosmetic and dermatologic applications.


Subject(s)
Karaya Gum , Vitamins , Gum Arabic/chemistry , Karaya Gum/chemistry , Polyethylene Glycols , Regeneration , Skin
12.
Small ; 18(36): e2106612, 2022 09.
Article in English | MEDLINE | ID: mdl-35122470

ABSTRACT

Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.


Subject(s)
Biofilms , Escherichia coli , Robotics , Titanium , Catalysis , Humans , Titanium/pharmacology , Urea/pharmacology , Urease/pharmacology
13.
ACS Appl Mater Interfaces ; 14(4): 6203-6211, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35073695

ABSTRACT

Ultraviolet (UV) sensors are a key component in growing applications such as water quality treatment and environmental monitoring, with considerable interest in their miniaturization and enhanced operation. This work presents a passive gold coplanar waveguide split ring resonator integrated with anodic self-organized TiO2 nanotube (TNT) membranes with a thickness of 20 µm to provide real-time UV detection. The resonator operated as a one-port device to capture the reflection coefficient (S11) signal, with a center frequency of 16 GHz and a notch amplitude of -88 dB. It was experimentally analyzed for its UV sensing capability in the range of 36.5-463 µW/cm2. The high-frequency resonator was improved through design choices including the addition of a tapered input transmission line, wire bonding for practical device design, and an interdigitated capacitive ring gap. The high frequency also helped mitigate noise due to water vapor or environmental contaminants. S11 amplitude variation was found through both experiments and modeling to follow a linear trend with UV illumination intensity. The resonator exhibited over 45 ± 2 dB shift in the resonant amplitude under the highest UV illumination conditions, with a sensitivity of 0.084 dB/µW cm-2 and the potential to sense UV intensity as low as 2.7 µW/cm2. The presented device enabled a repeatable and accurate microwave response under UV illumination with very high sensitivity, entirely through the use of passive circuit elements.

14.
Polymers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883586

ABSTRACT

Ibuprofen separation from water by adsorption and pertraction processes has been studied, comparing 16 different membranes. Tailor-made membranes based on Matrimid, Ultem, and diaminobenzene/diaminobenzoic acid with various contents of zeolite and graphene oxide, have been compared to the commercial polystyrene, polypropylene, and polydimethylsiloxane polymeric membranes. Experimental results revealed lower ibuprofen adsorption onto commercial membranes than onto tailor-made membranes (10-15% compared to 50-70%). However, the mechanical stability of commercial membranes allowed the pertraction process application, which displayed a superior quantity of ibuprofen eliminated. Additionally, the saturation of the best-performing commercial membrane, polydimethylsiloxane, was notably prevented by atomic layer deposition of (3-aminopropyl)triethoxysilane.

15.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771840

ABSTRACT

If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp2 "soft" carbon phase to protect Zr alloy fuel rods (ZIRLO®) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO® (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp2 "soft" carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors.

16.
Nano Lett ; 21(20): 8701-8706, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34609883

ABSTRACT

In this work, large 3D Ti meshes fabricated by direct ink writing were wirelessly anodized for the first time to prepare highly photocatalytically active TiO2 nanotube (TNT) layers. The use of bipolar electrochemistry enabled the fabrication of TNT layers within the 3D Ti meshes without the establishment of an electrical contact between Ti meshes and the potentiostat, confirming its unique ability and advantage for the synthesis of anodic structures on metallic substrates with a complex geometry. TNT layers with nanotube diameters of up to 110 nm and thicknesses of up to 3.3 µm were formed. The TNT-layer-modified 3D Ti meshes showed a superior performance for the photocatalytic degradation of methylene blue in comparison to TiO2-nanoparticle-decorated and nonanodized Ti meshes (with a thermal oxide layer), resulting in multiple increases in the dye degradation rate. The results presented here open new horizons for the employment of anodized 3D Ti meshes in various flow-through (photo)catalytic reactors.

17.
ACS Omega ; 6(27): 17698-17708, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278155

ABSTRACT

Ethanol-based E5 and E10 fuels have extensively been used as automotive fuels in gasoline engines. However, especially when contaminated, these fuels can exhibit corrosion effects on some engine construction parts such as mild steel. Thus, the study of mild steel corrosion resistance has become of the utmost importance. Electrochemical methods such as electrochemical impedance spectroscopy (EIS) and polarization characteristics measurements (Tafel scan-TS) were proven to be very valuable in studying the mild steel corrosion behavior in ethanol-gasoline blends (EGBs). However, the use of these methods was, so far, very limited for low-ethanol-content EGBs such as E5 and E10 due to their low conductivity. In this study, we present modified EIS and TS corrosion measurements based on the use of tetrabutylammonium tetrafluoroborate (TBATFB) at 500 mg/L as a supporting electrolyte. This modification led to an increase in the contaminated E5 and E10 fuels' conductivity, which allowed us to successfully perform the electrochemical corrosion tests. The corrosion current densities were determined to be 1.5 × 10-3 and 1.5 × 10-2 µA/cm2 for the tested E5 and E10 fuels, respectively. These modified methods present a significant extension of an electrochemical testing apparatus for steel corrosion studies in EGBs. They can allow one to obtain instantaneous information about the occurring corrosion process and, thus, estimate the materials' lifetime in corrosive environments and potentially help to prevent corrosion.

18.
ACS Omega ; 6(10): 6554-6558, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748567

ABSTRACT

Organoselenium compounds with perspective application as Se precursors for atomic layer deposition have been reviewed. The originally limited portfolio of available Se precursors such as H2Se and diethyl(di)selenide has recently been extended by bis(trialkylsilyl)selenides, bis(trialkylstannyl)selenides, cyclic selenides, and tetrakis(N,N-dimethyldithiocarbamate)selenium. Their structural aspects, property tuning, fundamental properties, and preparations are discussed. It turned out that symmetric four- and six-membered cyclic silyl selenides possess well-balanced reactivity/stability, facile and cost-effective synthesis starting from inexpensive and readily available chlorosilanes, improved resistance toward air and moisture, easy handling, sufficient volatility, thermal resistance, and complete gas-to-solid phase exchange reaction with MoCl5, affording MoSe2 nanostructures. These properties make them the most promising Se precursor developed for atomic layer deposition so far.

19.
Nanoscale Adv ; 3(15): 4589-4596, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-36133479

ABSTRACT

This work describes the synthesis of highly photocatalytically active TiO2 tubes (TiTBs) by combining centrifugal spinning and atomic layer deposition (ALD). Poly(vinyl pyrrolidone) (PVP) fibers were first produced by centrifugal spinning and subsequently coated with TiO2 with various film thicknesses in a fluidized bed ALD reactor. After annealing of the TiO2 ALD coated PVP fibers, TiO2 tubes (TiTBs) with excellent textural properties and diameters in the range from approx. 170 to 430 nm were obtained. The morphology and structure of all TiTBs were investigated by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller analysis (BET). Liquid phase photocatalysis was conducted to determine the photocatalytic activity of the TiTBs. The photocatalytic activity of the TiTBs obtained after 50 TiO2 ALD cycles (degradation rate 0.123 min-1) was twice that of the reference TiO2 P25. The underlying reasons for the remarkable photocatalytic performance were textural properties of the resulting tubes along with suitable crystallinity, embedded within the 1D tubular morphology. The herein presented proof-of-concept approach paves a way for the processing of various polymeric fibers into various tubular nanostructures.

20.
RSC Adv ; 11(36): 22140-22147, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-35480798

ABSTRACT

The currently limited portfolio of volatile organoselenium compounds used for atomic layer deposition (ALD) has been extended by designing and preparing a series of four-, five- and six-membered cyclic silylselenides. Their fundamental properties were tailored by alternating the ring size, the number of embedded Se atoms and the used peripheral alkyl chains. In contrast to former preparations based on formation of sodium or lithium selenides, the newly developed synthetic method utilizes a direct and easy reaction of elemental selenium with chlorosilanes. Novel 2,2,4,4-tetraisopropyl-1,3,2,4-diselenadisiletane, which features good trade-off between chemical/thermal stability and reactivity, has been successfully used for gas-to-solid phase reaction with MoCl5 affording MoSe2. A thorough characterization of the as-deposited 2D MoSe2 flakes revealed its out-of-plane orientation and high purity. Hence, the developed four-membered cyclic silylselenide turned out to be well-suited Se-precursor for ALD of MoSe2.

SELECTION OF CITATIONS
SEARCH DETAIL
...