Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675226

ABSTRACT

High flow oxygen (HFO) therapy is a well-established treatment in respiratory disease. Concurrent aerosol delivery can greatly expediate their recovery. The aim of this work was to complete a comprehensive characterisation of one such HFO therapy system, the Airvo2TM, used in combination with the Aerogen SoloTM vibrating mesh nebuliser. Representative adult, infant, and paediatric head models were connected to a breathing simulator via a collection filter placed at the level of the trachea. A tracheostomy interface and nasal cannulas were used to deliver the aerosol. Cannula size and gas flow rate were varied across the full operating range recommended by the manufacturer. The tracheal and emitted doses were quantified via UV-spectrophotometry. The aerosol droplet diameter at the exit of the nares and tracheal interface was measured via cascade impaction. High gas flow rates resulted in low emitted and tracheal doses (%). Nasal cannula size had no significant effect on the tracheal dose (%) available in infant and paediatric models. Higher gas flow rates resulted in smaller aerosol droplets at the exit of the nares and tracheostomy interface. Gas flow rate was found to be the primary parameter affecting aerosol delivery. Thus, gas flow rates should be kept low and where possible, delivered using larger nasal cannulas to maximise aerosol delivery.

2.
Pharmaceutics ; 15(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38140020

ABSTRACT

High-flow nasal oxygen therapy is being increasingly adopted in intensive and home care settings. The concurrent delivery of aerosolised therapeutics allows for the targeted treatment of respiratory illnesses. This study examined in-line aerosol therapy via a nasal cannula to simulated adult and paediatric models with healthy, obstructive and restrictive lung types. The Aerogen Solo vibrating mesh nebuliser was used in combination with the InspiredTM O2FLO high-flow therapy system. Representative adult and paediatric head models were connected to a breathing simulator, which replicated several different states of lung health. The aerosol delivery was quantified at the tracheal level using UV-spectrophotometry. Testing was performed at a range of supplemental gas flow rates applicable to both models. Positive end-expiratory pressure was measured pre-, during and post-nebulisation. The increases in supplemental gas flow rates resulted in a decrease in aerosol delivery, irrespective of lung health. Large tidal volumes and extended inspiratory phases were associated with the greatest aerosol delivery. Gas flow to inspiratory flow ratios of 0.29-0.5 were found to be optimum for aerosol delivery. To enhance aerosol delivery to patients receiving high-flow nasal oxygen therapy, respiratory therapists should keep supplemental gas-flow rates below the inspiratory flow of the patient.

3.
Front Med (Lausanne) ; 10: 1307301, 2023.
Article in English | MEDLINE | ID: mdl-38327274

ABSTRACT

Introduction: Aerosol therapy is often prescribed concurrently during invasive mechanical ventilation (IMV). This study determines the effects of nebuliser position, circuit humidification source, and most importantly, lung health on the delivery of aerosol in simulated adult and paediatric IMV patients. Furthermore, the influence of closed suction catheters on aerosol delivery is also addressed. Methods: A vibrating mesh nebuliser was used to deliver Albuterol to simulated adult and paediatric IMV patients with differing states of lung health. Four different nebuliser positions and two types of humidification were analysed. Closed suction catheter mounts, a mainstay in IMV therapy, were incorporated into the circuits. The mean ± SD dose of aerosol (%) was assayed from a filter at the distal end of the endotracheal tube. Results: Nebuliser placement and circuit humidification source had no effect on the delivered dose (%) in adults, yet both significantly did in the simulated paediatric patients. The use of closed suction catheter mounts significantly reduced the delivered dose (%) in adults but not in paediatric patients. A simulated healthy lung state generated the largest delivered dose (%), irrespective of nebuliser position in the adult. However, different lung health and nebuliser positions yielded higher delivered doses (%) in paediatrics. Conclusion: Lung health and respiratory circuit composition significantly affect aerosol delivery in both adult and paediatric IMV patients. Nebuliser placement and respiratory circuit humidification source do not affect the delivered dose in adult but do in paediatric IMV patients.

4.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34962221

ABSTRACT

Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.


Subject(s)
Aerosols , COVID-19 , Drug Delivery Systems , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nebulizers and Vaporizers , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design , Humans , Infection Control/methods , Models, Biological , Particle Size , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , SARS-CoV-2
5.
Pharmaceutics ; 13(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34683867

ABSTRACT

Drug delivery devices used for aerosol therapy during mechanical ventilation to ease the symptoms of respiratory diseases provide beneficial treatment but can also pose challenges. Reflecting the significant changes in global guidance around aerosol usage and lung-protective ventilation strategies, seen in response to the COVID-19 pandemic, for the first time, we describe the drug delivery performance of commonly used devices under these conditions. Here, vibrating mesh nebuliser (VMN), jet nebuliser (JN) and pressurised metered-dose inhaler (pMDI) performance was assessed during simulated adult mechanical ventilation. Both standard test breathing patterns and those representatives of low tidal volume (LTV) ventilation with concurrent active and passive humidification were investigated. Drug delivery using a VMN was significantly greater than that with a JN and pMDI for both standard and LTV ventilation. Humidification type did not affect the delivered dose across all device types for standard ventilation. Significant variability in the pMDI dosing was evident, depending on the timing of actuation and the adapter type used. pMDI actuation synchronised with inspiration resulted in a higher delivered drug dose. The type of adapter used for pMDI actuation influenced drug delivery, with the highest dose observed using the CombiHaler.

6.
Drug Deliv ; 28(1): 1496-1500, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34259091

ABSTRACT

COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.


Subject(s)
Aerosols , COVID-19 , Disease Transmission, Infectious/prevention & control , Metered Dose Inhalers , Nebulizers and Vaporizers , Respiration, Artificial/methods , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/physiopathology , COVID-19/therapy , COVID-19/transmission , Combined Modality Therapy , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Occupational Exposure/prevention & control , Research Design , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , Risk Management , SARS-CoV-2
7.
BMJ Open Respir Res ; 8(1)2021 Mar.
Article in English | MEDLINE | ID: mdl-33771812

ABSTRACT

BACKGROUND: The COVID-19 pandemic has highlighted the need for alternative short-term, reliable means to aid in the treatment of patients requiring ventilatory support. Concurrent aerosol drug delivery is often prescribed to such patients. As such, this study examines one such short-term option, the disposable gas-powered transport ventilator to effectively deliver aerosol therapy. Factors such as aerosol generator type, patient breathing pattern, humidification and nebuliser position within the respiratory circuit were also examined. METHODS: Aerosol drug delivery characterisation was undertaken using two different disposable transport ventilators (DTVs). Two different nebuliser types, a closed circuit vibrating mesh nebuliser (VMN) and an open circuit jet nebuliser (JN), at different locations in a respiratory circuit, proximal and distal to an endotracheal tube (ETT), with and without passive humidification, were evaluated in simulated adult and paediatric patients. RESULTS: Placement of a nebuliser proximal to the ETT (VMN: 25.19%-34.15% and JN: 3.14%-8.92%), and the addition of a heat and moisture exchange filter (VMN: 32.37%-40.43% and JN: 5.60%-9.91%) resulted in the largest potential lung dose in the adult patient model. Irrespective of nebuliser position and humidification in the respiratory circuit, use of the VMN resulted in the largest potential lung dose (%). A similar trend was recorded in the paediatric model data, where the largest potential lung dose was recorded with both nebuliser types placed proximal to the ETT (VMN: 8.12%-10.89% and JN: 2.15%-3.82%). However, the addition of a heat and moisture exchange filter had no statistically significant effect on the potential lung dose (%) a paediatric patient would receive (p>>0.05). CONCLUSIONS: This study demonstrates that transport ventilators, such as DTVs, can be used concurrently with aerosol generators to effectively deliver aerosolised medication in both adult and paediatric patients.


Subject(s)
COVID-19/therapy , Disposable Equipment , Nebulizers and Vaporizers , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Administration, Inhalation , Aerosols , Albuterol/therapeutic use , Drug Delivery Systems , Equipment Design , Humans , In Vitro Techniques , SARS-CoV-2
8.
Pharmaceutics ; 13(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540764

ABSTRACT

COVID-19 may lead to serious respiratory complications which may necessitate ventilatory support. There is concern surrounding potential release of patient-derived bioaerosol during nebuliser drug refill, which could impact the health of caregivers. Consequently, mesh nebulisers have been recommended by various clinical practice guidelines. Currently, there is a lack of empirical data describing the potential for release of patient-derived bioaerosol during drug refill. This study examined the release of simulated patient-derived bioaerosol, and the effect on positive end expiratory pressure during nebuliser refill during mechanical ventilation of a simulated patient. During jet nebuliser refill, the positive end expiratory pressure decreased from 4.5 to 0 cm H2O. No loss in pressure was noted during vibrating mesh nebuliser refill. A median particle number concentration of 710 particles cm-3 above ambient was detected when refilling the jet nebuliser in comparison to no increase above ambient detected when using the vibrating mesh nebuliser. The jet nebuliser with the endotracheal tube clamped resulted in 60 particles cm-3 above ambient levels. This study confirms that choice of nebuliser impacts both the potential for patient-derived bioaerosol release and the ability to maintain ventilator circuit pressures and validates the recommended use of mesh nebulisers during mechanical ventilation.

9.
Pharmaceutics ; 14(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35056920

ABSTRACT

There are variations in the values reported for aerosol drug delivery across in vitro experiments throughout the published literature, and often with the same devices or similar experimental setups. Factors contributing to this variability include, but are not limited to device type, equipment settings, drug type and quantification methods. This study assessed the impact of head model choice on aerosol drug delivery using six different adults and three different paediatric head models in combination with a facemask, mouthpiece, and high-flow nasal cannula. Under controlled test conditions, the quantity of drug collected varied depending on the choice of head model. Head models vary depending on a combination of structural design differences, facial features (size and structure), internal volume measurements and airway geometries and these variations result in the differences in aerosol delivery. Of the widely available head models used in this study, only three were seen to closely predict in vivo aerosol delivery performance in adults compared with published scintigraphy data. Further, this testing identified the limited utility of some head models under certain test conditions, for example, the range reported across head models was aerosol drug delivery of 2.62 ± 2.86% to 37.79 ± 1.55% when used with a facemask. For the first time, this study highlights the impact of head model choice on reported aerosol drug delivery within a laboratory setting and contributes to explaining the differences in values reported within the literature.

10.
ACS Appl Mater Interfaces ; 7(42): 23575-88, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26372672

ABSTRACT

Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat transfer and water collection applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...