Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 43(40): 15192-200, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25185114

ABSTRACT

The Ni(II) and Zn(II) complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))3, pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu(II) complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, (1)H and (13)C{(1)H} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(n)Bu4N](Tpms(Ph)) (7), the latter obtained upon Li(+) replacement by [(n)Bu4N](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn(II) and Cu(II) complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding ß-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni(II) complex 2 only shows a modest catalytic activity.


Subject(s)
Copper/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Nickel/chemistry , Nitro Compounds/chemistry , Zinc/chemistry , Catalysis , Crystallography, X-Ray , Ligands , Mesylates/chemistry , Models, Molecular , Stereoisomerism
2.
Inorg Chem ; 52(13): 7524-40, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23758222

ABSTRACT

Reactions of 5-tert-butyl-2-hydroxy-3-methylsulfanylbenzaldehyde S-methylisothiosemicarbazone and 5-tert-butyl-2-hydroxy-3-phenylsulfanylbenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione (Hacac) and triethyl orthoformate in the presence of M(acac)2 as template source at 107 °C afforded metal complexes of the type M(II)L(1) and M(II)L(2), where M = Ni and Cu, with a new Schiff base ligand with thiomethyl (H2L(1)) and/or thiophenyl (H2L(2)) group in the ortho position of the phenolic moiety. Demetalation of NiL(1) in CHCl3 with HCl(g) afforded H2L(1). The latter reacts with Zn(OAc)2·2H2O with formation of ZnL(1). The effect of -SR groups and metal ion identity on stabilization of phenoxyl radicals generated electrochemically was studied in detail. A marked stabilization of phenoxyl radical was observed in one-electron-oxidized complexes [ML(2)](+) (M = Ni, Cu) at room temperature, as demonstrated by cyclic voltammetry, EPR spectroscopy, and UV-vis-NIR measurements. In solution, the oxidized CuL(2) and NiL(2) display intense low-energy NIR transitions consistent with their classification as metal-delocalized phenoxyl radical species. While the CuL(2) complex shows reversible reduction, reduction of NiL(2), CuL(1), and NiL(1) is irreversible. EPR measurements in conjunction with density functional theory calculations provided insights into the extent of electron delocalization as well as spin density in different redox states. The experimental room temperature spectroelectrochemical data can be reliably interpreted with the (3)[CuL(2)](+) and (2)[NiL(2)](+) oxidation ground states. The catalytic activity of synthesized complexes in the selective oxidations of alcohols has been studied as well. The remarkable efficiency is evident from the high yields of carbonyl products when employing both the CuL(2)/air/TEMPO and the CuL(2)/TBHP/MW(microwave-assisted) oxidation systems.


Subject(s)
Coordination Complexes/chemistry , Galactose Oxidase/chemistry , Oxygen/chemistry , Phenols/chemistry , Catalysis , Copper/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ligands , Models, Molecular , Nickel/chemistry , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Zinc/chemistry
3.
Dalton Trans ; 42(2): 399-406, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23059799

ABSTRACT

A series of double dihydromethylpiperazinediium metallic sulfates 1-7 [H(2)mpz]M(II)(SO(4))(2)·nH(2)O (mpz = 2-methylpiperazine, C(5)H(12)N(2)) are prepared by slow evaporation using a racemic (R/S)-mpz (for 1, 2) or enantiopure R-mpz (for 3), S-mpz (for 4-7) and sulfates of Cu(II) (for 5), Fe(II) (for 1, 4), Co(II) (for 7) and Zn(II) (for 2, 3, 6), and characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction. The [M(II)(H(2)O)(6)](2+), [(R/S)-H(2)mpz](2+), [(R)-H(2)mpz](2+) or [(S)-H(2)mpz](2+) cations and 2SO(4)(2-) anions are linked together via two types of hydrogen bonds, Ow-Hw···O and N-H···O, leading to supramolecular arrangements. The use of the racemic 2-mpz provides alternatives in crystallization: a centrosymmetric structure where the enantiomers are related by an appropriate crystallographic symmetry operation or one where the enantiomers occupy the same crystallographic position, generating disorder. Compounds 1-7 act as diastereoselective catalysts for the nitroaldol (Henry) reaction. The diastereoselectivity can be regulated from exclusive threo to exclusive erythro isomer preparation with typical yields of 50-99%, depending on the catalyst and the substrate used.

4.
Chemistry ; 19(2): 588-600, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23180736

ABSTRACT

A one-pot template condensation of 2-(2-(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H(2)L(1), 1) or 2-(2-(dicyanomethylene)hydrazinyl)benzoic acid (H(2)L(2), 2) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H(2)O)(2)(κO(1),κN(2)L(1a)] (3) and [Cu(H(2)O)(κO(1),κN(3)L(1b))] (4), tetranuclear [Cu(4)(1κO(1),κN(2):2κO(1)L(2a))(3)-(1κO(1), κN(2):2κO(2)L(2a))] (5), [Cu(2)(H(2)O)(1κO(1), κN(2):2κO(1)L(2c))-(1κO(1),1κN(2):2κO(1),2 κN(1)- L(2c))](2) (6) and [Cu(2)(H(2)O)(2)(κO(1),κN(2)- L(1dd))-(1κO(1),κN(2):2κO(1)L(1dd))(µ-H(2)O)](2·) 2H(2)O (7·2H(2)O), as well as polymer- ic [Cu(H(2)O)(κO(1),1κN(2):2κN(1)L(1c))](n) (8) and [Cu(NH(2)C(2)H(5))(κO(1),1κN(2):2κN(1)L(2a))](n) (9). The ligands 2-SO(3)H-C(6)H(4)-(NH)N=C{(CN)[C(NH(2))-(=NCH(2)CH(2)NH(2))]} (H(2)L(1b), 10), 2-CO(2)H-C(6)H(4)-(NH)N={C(CN)[C(OCH(3))-(=NH)]} (H(2)L(2a), 11) and 2-SO(3)H-C(6)H(4)-(NH)N=C{C(=O)-(NH(2))}(2) (H(2)L(1dd), 12) were easily liberated upon respective treatment of 4, 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2-(SO(3)(−))-C(6)H(4)-N=NC(-C=(NH(+))CH(2)CH(2)NH)(=CNHCH(2)CH(2)NH) (13) was observed when 1 was treated with ethylenediamine. The hydrogen bond-induced E/Z isomerization of the (HL(1d))(−) ligand occurs upon conversion of [{Na(H(2)O)(2)(µ-H(2)O)(2)}(HL(1d))](n) (14) to [Cu(H(2)O)(6)][HL(1d)](2)·2H(2)O (15) and [{CuNa(H(2)O)-(κN(1),1κO(2):2κO(1)L(1d))(2)}K(0.5)(µ-O)(2)]n·H(2)O (16). The synthesized complexes 3­9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80­99%.

5.
J Inorg Biochem ; 115: 72-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22926026

ABSTRACT

The aquasoluble Fe(III) complexes [Fe(H(2)O)(3)(L(1))]∙4H(2)O (3) and [Fe(H(2)O)(3)(L(2))]∙3H(2)O (4), bearing the basic forms of 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxy-benzenesulfonic acid (H(3)L(1), 1) and 3-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)-2-hydroxy-5-nitrobenzenesulfonic acid (H(3)L(2), 2), were synthesized and fully characterized including by X-ray crystal structural analysis. In the channels of the water-soluble 3D networks of 3 and 4, the uncoordinated water molecules are held by oxygen atoms of the carbonyl and sulfonyl groups, and by the water ligands. The Fe(III) coordination environment resembles that in the active sites of some mononuclear non-heme iron-containing enzymes. The complexes show a high catalytic activity for the peroxidative oxidation (with aqueous H(2)O(2)) of C(5)-C(8) cycloalkanes to the corresponding alcohols and ketones under mild conditions. The effects of various factors, such as amounts of oxidant, catalyst and HNO(3) additive, were investigated allowing to reach overall yields of ca. 25% and turnover numbers (TONs) up to 290. The catalytic reactions proceed via both oxygen- and carbon-radicals as shown by radical trap experiments.


Subject(s)
Benzenesulfonates/chemistry , Cycloparaffins/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Catalysis , Crystallography, X-Ray , Oxidation-Reduction , Solubility
6.
Dalton Trans ; 40(19): 5352-61, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21461448

ABSTRACT

The zinc(II) complexes with ortho-hydroxy substituted arylhydrazo-ß-diketonates [Zn(2)(CH(3)OH)(2)(µ-L(1))(2)] (5), [Zn{(CH(3))(2)SO}(H(2)O)(L(2))] (6), [Zn(2)(H(2)O)(2)(µ-L(3))(2)] (7) and [Zn(H(2)O)(2)(L(4))]·H(2)O (8) were synthesized by reaction of a zinc(II) salt with the appropriate hydrazo-ß-diketone, HO-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) (H(2)L(1), 1), HO-2-O(2)N-4-C(6)H(3)-NHN=C{C(=O)CH(3)}(2) (H(2)L(2), 2), HO-2-C(6)H(4)-NHN=CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(3), 3) or HO-2-O(2)N-4-C(6)H(3)-NHN=[CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(4), 4). They were fully characterized, namely by X-ray diffraction analysis that disclosed the formation of extensive H-bonds leading to 1D chains (5 and 6), 2D layers (7) or 3D networks (8). The thermodynamic parameters of the Zn(II) reaction with H(2)L(2) in solution, as well as of the thermal decomposition of 1-8 were determined. Complexes 5-8 act as diastereoselective catalysts for the nitroaldol (Henry) reaction. The threo/erythro diastereoselectivity of the ß-nitroalkanol products ranges from 8:1 to 1:10 with typical yields of 80-99%, depending on the catalyst and substrate used.

7.
Dalton Trans ; 40(12): 2822-36, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21301728

ABSTRACT

Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) bearing a substituent in the ortho-position [X = OH (H(2)L(1)) 1, AsO(3)H(2) (H(3)L(2)) 2, Cl (HL(3)) 3, SO(3)H (H(2)L(4)) 4, COOCH(3) (HL(5)) 5, COOH (H(2)L(6)) 6, NO(2) (HL(7)) 7 or H (HL(8)) 8] lead to a variety of complexes including the monomeric [CuL(4)(H(2)O)(2)]·H(2)O 10, [CuL(4)(H(2)O)(2)] 11 and [Cu(HL(4))(2)(H(2)O)(4)] 12, the dimeric [Cu(2)(H(2)O)(2)(µ-HL(2))(2)] 9 and the polymeric [Cu(µ-L(6))](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H(2)O)(4){NCNC(NH(2))(2)}(2)](HL(4))(2)·6H(2)O 14 and the heteroligand polymer [Cu(µ-L(4))(im)](n)15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, (1)H and (13)C NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L(8))(H(2)O)]·H(2)O, [Cu(L(1))(H(2)O)(2)]·H(2)O and [Cu(L(4))(H(2)O)(2)]·H(2)O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H(2)O(2)) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H(2)O (total yields of ca. 20% with TONs up to 566), under mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...