Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Sci ; 13(32): 9295-9304, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36093024

ABSTRACT

Recently proposed bimetallic octahedral Pt-Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.

2.
ACS Appl Mater Interfaces ; 14(26): 29690-29702, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35731012

ABSTRACT

Over the past decade, advances in the colloidal syntheses of octahedral-shaped Pt-Ni alloy nanocatalysts for use in fuel cell cathodes have raised our atomic-scale control of particle morphology and surface composition, which, in turn, helped raise their catalytic activity far above that of benchmark Pt catalysts. Future fuel cell deployment in heavy-duty vehicles caused the scientific priorities to shift from alloy particle activity to stability. Larger particles generally offer enhanced thermodynamic stability, yet synthetic approaches toward larger octahedral Pt-Ni alloy nanoparticles have remained elusive. In this study, we show how a simple manipulation of solvothermal synthesis reaction kinetics involving depressurization of the gas phase at different stages of the reaction allows tuning the size of the resulting octahedral nanocatalysts to previously unachieved scales. We then link the underlying mechanism of our approach to the classical "LaMer" model of nucleation and growth. We focus on large, annealed Mo-doped Pt-Ni octahedra and investigate their synthesis, post-synthesis treatments, and elemental distribution using advanced electron microscopy. We evaluate the electrocatalytic ORR performance and stability and succeed to obtain a deeper understanding of the enhanced stability of a new class of relatively large, active, and long-lived Mo-doped Pt-Ni octahedral catalysts for the cathode of PEMFCs.

3.
Microsc Microanal ; : 1-15, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33843542

ABSTRACT

The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.

4.
Ultramicroscopy ; 231: 113270, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33888359

ABSTRACT

Computer simulations are used to assess the influence of a 20-nm-thick SiNx membrane on the quantification of atomic-resolution annular dark-field (ADF) scanning transmission electron microscopy images of Pt nanoparticles. The discussions include the effect of different nanoparticle/membrane arrangements, accelerating voltage, nanoparticle thickness and the presence of adjacent atomic columns on the accuracy with which the number of Pt atoms in each atom column can be counted. The results, which are based on the use of ADF scattering cross-sections, show that an accuracy of better than a single atom is attainable at 200 and 300 kV. At 80kV, the scattering in a typical SiNx membrane is sufficiently strong that the best possible atom counting accuracy is reduced to +/- 2 atoms. The implications of the work for quantitative studies of Pt nanoparticles imaged through SiNx membranes are discussed.

5.
Ultramicroscopy ; 220: 113166, 2021 01.
Article in English | MEDLINE | ID: mdl-33227698

ABSTRACT

Electron tomography has been widely applied to three-dimensional (3D) morphology characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic (HEBT) reconstruction technique has been developed to extract high resolution element-specific information. However, the reconstructed elemental maps cannot be directly converted to quantitative compositional information. In this work, we propose a quantification approach for obtaining elemental weight fraction maps from the HEBT reconstruction technique using the physical parameters extracted from a Monte Carlo code, MC X-ray. A similar quantification approach is proposed for the EDS-STEM tomographic reconstruction. The performance of the two quantitative reconstruction methods, using the simultaneous iterative reconstruction technique, are evaluated and compared for a simulated dataset of a two-dimensional phantom sample. The effects of the reconstruction parameters including the number of iterations and the weight of the HAADF signal are discussed. Finally, the two approaches are applied to an experimental dataset to show the 3D structure and quantitative elemental maps of a particle of flux melted metal-organic framework glass.

6.
ACS Nano ; 14(10): 13806-13815, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32924433

ABSTRACT

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a general and scalable approach to increase both light absorption and excitonic coupling of QDs by fabricating hierarchical metamaterials. We assemble QDs into crystalline supraparticles using an emulsion template and demonstrate that these colloidal supercrystals (SCs) exhibit extended resonant optical behavior resulting in an enhancement in absorption efficiency in the visible range of more than 2 orders of magnitude with respect to the case of dispersed QDs. This successful light trapping strategy is complemented by the enhanced excitonic coupling observed in ligand-exchanged SCs, experimentally demonstrated through ultrafast transient absorption spectroscopy and leading to the formation of a free biexciton system on sub-picosecond time scales. These results introduce a colloidal metamaterial designed by self-assembly from the bottom up, simultaneously featuring a combination of nanoscale and mesoscale properties leading to simultaneous photonic and excitonic coupling, therefore presenting the nanocrystal analogue of supramolecular structures.

7.
Ultramicroscopy ; 209: 112877, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31884381

ABSTRACT

A multi-modal and multi-scale non-local means (M3S-NLM) method is proposed to extract atomically resolved spectroscopic maps from low signal-to-noise (SNR) datasets recorded with a transmission electron microscope. This method improves upon previously tested denoising techniques as it takes into account the correlation between the dark-field signal recorded simultaneously with the spectroscopic dataset without compromising on the spatial resolution. The M3S-NLM method was applied to electron energy dispersive X-ray and electron-energy-loss spectroscopy (EELS) datasets. We illustrate the retrieval of the atomic scale diffusion process in an Al1-xInxN alloy grown on GaN and the surface oxidation state of perovskite nanocatalysts. The improved SNR of the EELS dataset also allows the retrieval of atomically resolved oxidation maps considering the fine structure absorption edge of LaMnO3 nanoparticles.

8.
Adv Struct Chem Imaging ; 4(1): 2, 2018.
Article in English | MEDLINE | ID: mdl-29497598

ABSTRACT

Advances in catalysis rely on the synthesis and characterisation of nanoparticles that have tailored structures and compositions. Although energy-dispersive X-ray (EDX) spectroscopy can be used to study local variations in the compositions of individual supported nanoparticles on the atomic-scale in the scanning transmission electron microscope, electron beam induced damage and contamination can preclude the use of long exposure times and tomographic approaches. Here, we perform simulations of EDX maps of seven different octahedral PtNi nanoparticles for a selection of crystallographic orientations and tilts, to evaluate which of them can be distinguished from elemental mapping performed in only one orientation.

9.
Angew Chem Int Ed Engl ; 56(44): 13795-13799, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28868762

ABSTRACT

Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na4 SnS4 and (NH4 )4 Sn2 S6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices.

10.
Ultramicroscopy ; 182: 264-275, 2017 11.
Article in English | MEDLINE | ID: mdl-28780142

ABSTRACT

Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed.

11.
Nano Lett ; 17(7): 4003-4012, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28644034

ABSTRACT

Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

12.
Microsc Microanal ; 22(1): 71-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26754480

ABSTRACT

The new generation of energy-dispersive X-ray (EDX) detectors with higher count rates than ever before, paves the way for a new approach to quantitative elemental analysis in the scanning transmission electron microscope. Here we demonstrate a method of calculating partial cross sections for use in quantifying EDX data, beneficial especially because of the simplicity of its implementation. Applying this approach to acid-leached PtCo catalyst nanoparticles leads to quantitative determination of the Pt surface enrichment.


Subject(s)
Cobalt/analysis , Microscopy, Electron, Scanning Transmission/methods , Nanoparticles/chemistry , Platinum/analysis , Spectrometry, X-Ray Emission/methods
13.
Nano Lett ; 14(11): 6336-41, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25340541

ABSTRACT

Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticle's 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...