Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184351, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821156
2.
Curr Opin Struct Biol ; 81: 102609, 2023 08.
Article in English | MEDLINE | ID: mdl-37224642

ABSTRACT

A goal of structural biology is to understand how macromolecules carry out their biological roles by identifying their metastable states, mechanisms of action, pathways leading to conformational changes, and the thermodynamic and kinetic relationships between those states. Integrative modeling brings structural insights into systems where traditional structure determination approaches cannot help. We focus on the synergies and challenges of integrative modeling combining experimental data with molecular dynamics simulations.


Subject(s)
Molecular Biology , Molecular Dynamics Simulation , Macromolecular Substances/chemistry , Computational Biology
3.
Biophys J ; 122(14): 2864-2870, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37050876

ABSTRACT

We describe a complete implementation of Martini 2 and Martini 3 in the OpenMM molecular dynamics software package. Martini is a widely used coarse-grained force field with applications in biomolecular simulation, materials, and broader areas of chemistry. It is implemented as a force field but makes extensive use of facilities unique to the GROMACS software, including virtual sites and bonded terms that are not commonly used in standard atomistic force fields. OpenMM is a flexible molecular dynamics package widely used for methods development and is competitive in speed on GPUs with other commonly used packages. OpenMM has facilities to easily implement new force field terms, external forces and fields, and other nonstandard features, which we use to implement all force field terms used in Martini 2 and Martini 3. This allows Martini simulations, starting with GROMACS topology files that are processed by custom scripts, with all the added flexibility of OpenMM. We provide a GitHub repository with test cases, compare accuracy and performance between GROMACS and OpenMM, and discuss the limitations of our implementation in terms of direct comparison with GROMACS. We describe a use case that implements the Modeling Employing Limited Data method to apply experimental constraints in a Martini simulation to efficiently determine the structure of a protein complex. We also discuss issues and a potential solution with the Martini 2 topology for cholesterol.


Subject(s)
Molecular Dynamics Simulation , Software
4.
J Phys Chem A ; 127(17): 3906-3913, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37084537

ABSTRACT

Cryo-electron microscopy data are becoming more prevalent and accessible at higher resolution levels, leading to the development of new computational tools to determine the atomic structure of macromolecules. However, while existing tools adapted from X-ray crystallography are suitable for the highest-resolution maps, new tools are needed for lower-resolution levels and to account for map heterogeneity. In this article, we introduce CryoFold 2.0, an integrative physics-based approach that combines Bayesian inference and the ability to handle multiple data sources with the molecular dynamics flexible fitting (MDFF) approach to determine the structures of macromolecules by using cryo-EM data. CryoFold 2.0 is incorporated into the MELD (modeling employing limited data) plugin, resulting in a pipeline that is more computationally efficient and accurate than running MELD or MDFF alone. The approach requires fewer computational resources and shorter simulation times than the original CryoFold, and it minimizes manual intervention. We demonstrate the effectiveness of the approach on eight different systems, highlighting its various benefits.


Subject(s)
Molecular Dynamics Simulation , Physics , Cryoelectron Microscopy/methods , Bayes Theorem , Crystallography, X-Ray , Protein Conformation
5.
Biophys J ; 122(5): 741-752, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36751130

ABSTRACT

Members of the fatty acid binding protein (FABP) family function as intracellular transporters of long-chain fatty acids and other hydrophobic molecules to different cellular compartments. Brain FABP (FABP7) exhibits ligand-directed differences in cellular transport. For example, when FABP7 binds to docosahexaenoic acid (DHA), the complex relocates to the nucleus and influences transcriptional activity, whereas FABP7 bound with monosaturated fatty acids remains in the cytosol. Preferential binding of FABP7 to polyunsaturated fatty acids like DHA has been previously observed and is thought to play a role in differential localization. However, we find that at 37°C, FABP7 does not display strong selectivity, suggesting that the conformational ensemble of FABP7 and its perturbation upon binding may be important. We use molecular dynamics simulations, NMR, and a variety of biophysical techniques to better understand the conformational ensemble of FABP7, how it is perturbed by fatty acid binding, and how this may be related to ligand-directed transport. We find that FABP7 has high degree of conformational heterogeneity that is substantially reduced upon ligand binding. We also observe substantial heterogeneity in ligand binding poses, which is consistent with our finding that ligand binding is resistant to mutations in key polar residues in the binding pocket. Our NMR experiments show that DHA binding leads to chemical shift perturbations in residues near the nuclear localization signal, which may point toward a mechanism of differential transport.


Subject(s)
Fatty Acid-Binding Proteins , Molecular Dynamics Simulation , Ligands , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Protein 7/genetics , Fatty Acid-Binding Protein 7/metabolism , Fatty Acids, Unsaturated
6.
Biophys J ; 122(4): 603-615, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36698315

ABSTRACT

Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.


Subject(s)
Fatty Acids , Neoplasms , Humans , Fatty Acids/metabolism , Micelles , Fatty Acid-Binding Proteins/chemistry , Neoplasms/metabolism , Cell Membrane/metabolism , Fatty Acid-Binding Protein 7/metabolism , Tumor Suppressor Proteins/metabolism
7.
ACS Chem Neurosci ; 13(4): 524-536, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35113527

ABSTRACT

Cav3.2 calcium channels are important mediators of nociceptive signaling in the primary afferent pain pathway, and their expression is increased in various rodent models of chronic pain. Previous work from our laboratory has shown that this is in part mediated by an aberrant expression of deubiquitinase USP5, which associates with these channels and increases their stability. Here, we report on a novel bioactive rhodanine compound (II-1), which was identified in compound library screens. II-1 inhibits biochemical interactions between USP5 and the Cav3.2 domain III-IV linker in a dose-dependent manner, without affecting the enzymatic activity of USP5. Molecular docking analysis reveals two potential binding pockets at the USP5-Cav3.2 interface that are distinct from the binding site of the deubiquitinase inhibitor WP1130 (a.k.a. degrasyn). With an understanding of the ability of some rhodanines to produce false positives in high-throughput screening, we have conducted several orthogonal assays to confirm the validity of this hit, including in vivo experiments. Intrathecal delivery of II-1 inhibited both phases of formalin-induced nocifensive behaviors in mice, as well as abolished thermal hyperalgesia induced by the delivery of complete Freund's adjuvant (CFA) to the hind paw. The latter effects were abolished in Cav3.2 null mice, thus confirming that Cav3.2 is required for the action of II-1. II-1 also mediated a robust inhibition of mechanical allodynia induced by injury to the sciatic nerve. Altogether, our data uncover a novel class of analgesics─well suited to rapid structure-activity relationship studies─that target the Cav3.2/USP5 interface.


Subject(s)
Analgesics , Calcium Channels, T-Type , Neuralgia , Ubiquitin-Specific Proteases , Analgesics/pharmacology , Animals , Calcium Channel Blockers , Calcium Channels, T-Type/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Mice , Molecular Docking Simulation , Neuralgia/metabolism , Structure-Activity Relationship , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism
8.
Front Mol Biosci ; 8: 676268, 2021.
Article in English | MEDLINE | ID: mdl-34476238

ABSTRACT

Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful tools for structure determination of large, sparsely protonated proteins. However traditional applications face several challenges, including a need for large datasets to offset the sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the spin-label, and noisy experimental data. Here we propose an integrative approach to structure determination combining sparse paramagnetic NMR with physical modelling to infer approximate protein structural ensembles. We use calmodulin in complex with the smooth muscle myosin light chain kinase peptide as a model system. Despite acquiring data from samples labeled only at the backbone amide positions, we are able to produce an ensemble with an average RMSD of ∼2.8 Å from a reference X-ray crystal structure. Our approach requires only backbone chemical shifts and measurements of the paramagnetic relaxation enhancement and residual dipolar couplings that can be obtained from sparsely labeled samples.

9.
Nat Commun ; 12(1): 1986, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790266

ABSTRACT

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Phosphorus-Oxygen Lyases/metabolism , Pseudomonas aeruginosa/metabolism , Second Messenger Systems/physiology , Signal Transduction/physiology , Algorithms , Bacterial Proteins/genetics , Biofilms/growth & development , Chromatography, Liquid , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Mass Spectrometry , Phosphorus-Oxygen Lyases/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Temperature
10.
J Am Soc Mass Spectrom ; 31(2): 207-216, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32031402

ABSTRACT

The functional properties of a protein are strongly influenced by its topography, or the solvent-facing contour map of its surface. Together with crosslinking, covalent labeling mass spectrometry (CL-MS) has the potential to contribute topographical data through the measurement of surface accessibility. However, recent efforts to correlate measures of surface accessibility with labeling yield have been met with mixed success. Most applications of CL-MS involve differential analysis of protein interactions (i.e., footprinting experiments) where such inconsistencies have limited effect. Extending CL-MS into structural analysis requires an improved evaluation of the relationship between labeling and surface exposure. In this study, we applied recently developed diazirine reagents to obtain deep coverage of the large motor domain of Eg5 (a mitotic kinesin), and together with computational methods we correlated labeling yields with accessibility data in a number of ways. We observe that correlations can indeed be seen at a local structural level, but these correlations do not extend across the structure. The lack of correlation arises from the influence of protein dynamics and chemical composition on reagent partitioning and, thus, also on labeling yield. We conclude that our use of CL-MS data should be considered in light of "chemical accessibility" rather than "solvent accessibility" and suggest that CL-MS data would be a useful tool in the fundamental study of protein-solute interactions.


Subject(s)
Diazomethane/chemistry , Kinesins/chemistry , Mass Spectrometry/methods , Humans , Indicators and Reagents , Models, Molecular , Protein Conformation
11.
J Med Chem ; 62(11): 5522-5540, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31117518

ABSTRACT

Protein-protein interactions (PPIs) have emerged as significant targets for therapeutic development, owing to their critical nature in diverse biological processes. An ideal PPI-based target is the protein myeloid cell leukemia 1 (MCL1), a critical prosurvival factor in cancers such as multiple myeloma where MCL1 levels directly correlate to disease progression. Current strategies for halting the antiapoptotic properties of MCL1 revolve around inhibiting its sequestration of proapoptotic factors. Existing inhibitors disrupt endogenous regulatory proteins; however, this strategy actually leads to an increase of MCL1 protein levels. Here, we show the development of hetero-bifunctional small molecules capable of selectively targeting MCL1 using a proteolysis targeting chimera (PROTAC) methodology leading to successful degradation. We have confirmed the involvement of the E3 ligase CUL4A-DDB1 cereblon ubiquitination pathway, making these PROTACs a first step toward a new class of antiapoptotic B-cell lymphoma 2 family protein degraders.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proteolysis/drug effects , Cell Line , Humans , Indoles/pharmacology , Models, Molecular , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Sulfonamides/pharmacology , Ubiquitination/drug effects
12.
Angew Chem Int Ed Engl ; 58(20): 6564-6568, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30913341

ABSTRACT

There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid-state NMR restraints with physics-based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi-quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid-state NMR data for the model protein GB1 labeled with Cu2+ -EDTA at six different sites. We are able to determine the structure to 0.9 Šaccuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Humans , Molecular Structure , Protein Conformation
13.
Curr Opin Struct Biol ; 49: 145-153, 2018 04.
Article in English | MEDLINE | ID: mdl-29554555

ABSTRACT

Biomolecular structure determination has long relied on heuristics based on physical insight; however, recent efforts to model conformational ensembles and to make sense of sparse, ambiguous, and noisy data have revealed the value of detailed, quantitative physical models in structure determination. We review these two key challenges, describe different approaches to physical modeling in structure determination, and illustrate several successes and emerging technologies enabled by physical modeling.


Subject(s)
Models, Molecular , Models, Theoretical , Algorithms , Molecular Conformation , Structure-Activity Relationship
14.
J Phys Chem B ; 122(21): 5448-5457, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29584433

ABSTRACT

Replica exchange is a widely used sampling strategy in molecular simulation. While a variety of methods exist to optimize parameters for temperature replica exchange, less is known about how to optimize parameters for more general Hamiltonian replica exchange simulations. We present an algorithm for the online optimization of total acceptance for both temperature and Hamiltonian replica exchange simulations using stochastic gradient descent. We optimize the total acceptance, a heuristic objective function capturing the efficiency of replica exchange. Our approach is general and has several desirable properties, including: (1) it makes few assumptions about the system of interest, (2) optimization occurs online without the requirement of presimulation, and (3) most importantly, it readily generalizes to systems where there are multiple control parameters (e.g., temperatures, force constants, etc.) that determine the Hamiltonian of each replica. We explore some general properties of the algorithm on a simple harmonic oscillator system, and demonstrate its effectiveness on a more complex data-guided protein folding simulation.

15.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1654-1663, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28648524

ABSTRACT

The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Subject(s)
Algorithms , Computer Simulation , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Molecular Conformation
16.
Sci Adv ; 2(11): e1601274, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27847872

ABSTRACT

We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Proteins/chemistry , Software
17.
J Chem Theory Comput ; 11(10): 4770-9, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26574266

ABSTRACT

Force fields, such as Amber's ff12SB, can be fairly accurate models of the physical forces in proteins and other biomolecules. When coupled with accurate solvation models, force fields are able to bring insight into the conformational preferences, transitions, pathways, and free energies for these biomolecules. When computational speed/cost matters, implicit solvent is often used but at the cost of accuracy. We present an empirical grid-like correction term, in the spirit of cMAPs, to the combination of the ff12SB protein force field and the GBneck2 implicit-solvent model. Ff12SB-cMAP is parametrized on experimental helicity data. We provide validation on a set of peptides and proteins. Ff12SB-cMAP successfully improves the secondary structure biases observed in ff12SB + Gbneck2. Ff12SB-cMAP can be downloaded ( https://github.com/laufercenter/Amap.git ) and used within the Amber package. It can improve the agreement of force fields + implicit solvent with experiments.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Protein Folding , Solvents/chemistry
18.
Proc Natl Acad Sci U S A ; 112(38): 11846-51, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351667

ABSTRACT

Atomistic molecular dynamics (MD) simulations of protein molecules are too computationally expensive to predict most native structures from amino acid sequences. Here, we integrate "weak" external knowledge into folding simulations to predict protein structures, given their sequence. For example, we instruct the computer "to form a hydrophobic core," "to form good secondary structures," or "to seek a compact state." This kind of information has been too combinatoric, nonspecific, and vague to help guide MD simulations before. Within atomistic replica-exchange molecular dynamics (REMD), we develop a statistical mechanical framework, modeling using limited data with coarse physical insight(s) (MELD + CPI), for harnessing weak information. As a test, we apply MELD + CPI to predict the native structures of 20 small proteins. MELD + CPI samples to within less than 3.2 Å from native for all 20 and correctly chooses the native structures (<4 Å) for 15 of them, including ubiquitin, a millisecond folder. MELD + CPI is up to five orders of magnitude faster than brute-force MD, satisfies detailed balance, and should scale well to larger proteins. MELD + CPI may be useful where physics-based simulations are needed to study protein mechanisms and populations and where we have some heuristic or coarse physical knowledge about states of interest.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Algorithms , Bayes Theorem , Protein Structure, Secondary , Thermodynamics
19.
Proc Natl Acad Sci U S A ; 112(22): 6985-90, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26038552

ABSTRACT

More than 100,000 protein structures are now known at atomic detail. However, far more are not yet known, particularly among large or complex proteins. Often, experimental information is only semireliable because it is uncertain, limited, or confusing in important ways. Some experiments give sparse information, some give ambiguous or nonspecific information, and others give uncertain information-where some is right, some is wrong, but we don't know which. We describe a method called Modeling Employing Limited Data (MELD) that can harness such problematic information in a physics-based, Bayesian framework for improved structure determination. We apply MELD to eight proteins of known structure for which such problematic structural data are available, including a sparse NMR dataset, two ambiguous EPR datasets, and four uncertain datasets taken from sequence evolution data. MELD gives excellent structures, indicating its promise for experimental biomolecule structure determination where only semireliable data are available.


Subject(s)
Models, Molecular , Molecular Biology/methods , Proteins/chemistry , Bayes Theorem , Protein Conformation
20.
J Chem Phys ; 143(24): 243143, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723628

ABSTRACT

Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Thermodynamics , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...