Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Aquat Anim Health ; 35(2): 88-100, 2023 06.
Article in English | MEDLINE | ID: mdl-37243311

ABSTRACT

OBJECTIVE: Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus causing severe disease in freshwater and saltwater fish species. The susceptibility of endangered Pallid Sturgeon Scaphirhynchus albus to VHSV genotype IVb (VHSV-IVb) infection was investigated. METHODS: An in vitro assessment using two Pallid Sturgeon cell lines derived from skin and spleen tissue and in vivo evaluation of juvenile Pallid Sturgeon after exposure to VHSV-IVb were performed. RESULT: Plaque assay and RT-PCR results confirmed VHSV-IVb replication in Pallid Sturgeon cell lines. Sturgeon were also susceptible to VHSV-IVb infection after immersion and injection exposures during laboratory experiments. However, after widespread mortality occurred in all treatment groups, including negative control fish, it was determined that the Pallid Sturgeon stock fish were infected with Missouri River sturgeon iridovirus (MRSIV) prior to experimental challenge. Nevertheless, mortalities were equal or higher among VHSV-exposed fish than among negative controls (MRSIV infected), and histopathological assessments indicated reduced hematopoietic cells in spleen and kidney tissues and hemorrhage in the gastrointestinal organs only in fish from the VHSV treatment. CONCLUSION: These results indicate that Pallid Sturgeon is a susceptible host for VHSV-IVb, but the degree of pathogenicity was confounded by the underlying MRSIV infection. Research comparing susceptibility of specific pathogen-free and MRSIV-infected fish to VHSV-IVb is needed to accurately assess the vulnerability of Pallid Sturgeon to VHSV-IVb.


Subject(s)
Fish Diseases , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Animals , Fishes , Genotype , Fresh Water , Novirhabdovirus/genetics
2.
Dis Aquat Organ ; 93(3): 225-34, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21516975

ABSTRACT

Infection by the invasive parasite Myxobolus cerebralis (causing whirling disease in salmonids) is strongly influenced by a stream's physico-chemical characteristics, which might affect host pathology. We examined whether environmental variables of a M. cerebralis-positive tributary to Yellowstone Lake, Yellowstone National Park, U.S.A., correlated with the histopathology of naturally infected native cutthroat trout Oncorhynchus clarkii bouvieri. Host inflammatory response and cranial cartilage lesions were the main correlates with whirling behavior. Canonical correlation analyses showed that the prevalence of trout with severe lesions in the cranial and jaw cartilages was highest in stream sites with a combination of high temperature and low specific conductivity. Our results reveal that environmental components can affect when and where a pathogen resides within the host, and manifestation of disease. Recognition of the synergism among environmental and histopathology factors most conducive to whirling disease will increase our prediction and detection abilities for M. cerebralis in salmonid hosts.


Subject(s)
Fish Diseases/parasitology , Myxobolus , Oncorhynchus , Parasitic Diseases, Animal/pathology , Animals , Ecosystem , Fish Diseases/epidemiology , Fish Diseases/pathology , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Wyoming/epidemiology
3.
Environ Toxicol Chem ; 28(4): 800-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19391677

ABSTRACT

A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT, USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16 degrees C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16 degrees C) compared to those at an experimental site 10 km downstream (26 degrees C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals.


Subject(s)
Health Status , Metals/analysis , Metals/toxicity , Rivers/chemistry , Temperature , Trout/physiology , Animals , Biofilms , Invertebrates/chemistry , Metals/pharmacokinetics , Population Dynamics , Tissue Distribution
4.
J Aquat Anim Health ; 20(2): 116-25, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18783133

ABSTRACT

The effects of freezing, drying, ultraviolet irradiation (UV), chlorine, and a quaternary ammonium compound on the infectivity of the myxospore stage of Myxobolus cerebralis (the causative agent of whirling disease) for Tubifex tubifex were examined in a series of laboratory trials. Freezing at either -20 degrees C or -80 degrees C for a period of 7 d or 2 months eliminated infectivity as assessed by the absence of production of the actinospore stage (triactinomyxons [TAMs]) from T. tubifex cultures inoculated with treated myxospores over a 4-5-month period. Myxospores retained infectivity when held in well water at 5 degrees C or 22 degrees C for 7 d and when held at 4 degrees C or 10 degrees C d for 2 months. In contrast, no TAMs were produced from T. tubifex cultures inoculated with myxospores held at 20 degrees C for 2 months. Drying of myxospores eliminated any evidence of infectivity for T. tubifex. Doses of UV from 40 to 480 mJ/cm2 were all effective for inactivating myxospores of M. cerebralis, although a few TAMs were detected in one replicate T. tubifex culture at 240 mJ/cm2 and in one replicate culture at 480 mJ/cm2. Treatments of myxospores with chlorine bleach at active concentrations of at least 500 mg/L for 15 min largely inactivated myxospore infectivity for T. tubifex. Likewise, there was no evidence of TAMs produced by T. tubifex inoculated with myxospores treated with alkyl dimethyl benzyl ammonium chloride (ADBAC) at 1,500 mg/L for 10 min. Treatments of myxospores with 1,000-mg/L ADBAC for 10 min reduced TAM production in T. tubifex cultures sevenfold relative to that in cultures inoculated with an equal number of untreated myxospores. These results indicate that myxospores of M. cerebralis demonstrate a selective rather than broad resistance to selected physical and chemical treatments, and this selective resistance is consistent with conditions that myxospores are likely to experience in nature.


Subject(s)
Cnidaria , Desiccation , Disinfectants/pharmacology , Freezing , Oligochaeta/parasitology , Spores , Ultraviolet Rays , Animals , Cnidaria/drug effects , Cnidaria/pathogenicity , Cnidaria/physiology , Cnidaria/radiation effects , Quaternary Ammonium Compounds/pharmacology , Sodium Hypochlorite/pharmacology , Spores/drug effects , Spores/pathogenicity , Spores/physiology , Spores/radiation effects , Virulence/drug effects , Virulence/physiology
5.
Environ Toxicol Chem ; 26(12): 2667-78, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18020695

ABSTRACT

Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-naïve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-microm filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 microg/L; mean, 428 microg/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 microg/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 microg/L; mean, 399 microg/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 microg/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologic conditions tested.


Subject(s)
Oncorhynchus , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring/methods , Montana , Oncorhynchus/growth & development , Periodicity , Reproducibility of Results , Species Specificity , Time Factors , Toxicity Tests , Trace Elements/toxicity , Water Pollutants, Chemical/toxicity
6.
Dis Aquat Organ ; 71(3): 191-9, 2006 Aug 30.
Article in English | MEDLINE | ID: mdl-17058600

ABSTRACT

Salmonid species and sub-species exhibit a range of susceptibility to Myxobolus cerebralis infection. Little is known about lesion severity and location, or time required for M. cerebralis myxospores to develop in Yellowstone cutthroat trout Oncorhynchus clarki bouvieri. In 2002 we performed three 10 d exposures of Yellowstone cutthroat trout fry in Pelican Creek, an M. cerebralis-positive tributary to Yellowstone Lake. At 90 and 150 d post-exposure we examined the fish for clinical signs, for infection prevalence, and by histology to determine M. cerebralis infection location and severity of lesions. The most prevalent clinical signs in Yellowstone cutthroat were whirling behavior and skeletal deformities, especially at 90 d post-exposure. Prevalence of infection and severity of cartilage lesions were not statistically different between fish held for 90 or 150 d post-exposure. Histopathology was most severe in cartilage of the cranium and the lower jaw, whereas cartilage of the nares and gill arches was seldom damaged. This study suggests that Yellowstone cutthroat trout are highly vulnerable to M. cerebralis and that current population declines in the Yellowstone Lake basin may, in part, result from whirling disease. Our results answer important questions in fish health and will aid in the development of diagnostic tools and management efforts against this pathogen in native cutthroat trout and other vulnerable salmonids.


Subject(s)
Fish Diseases/epidemiology , Oncorhynchus/parasitology , Protozoan Infections, Animal/epidemiology , Animals , Cartilage/pathology , Eukaryota/isolation & purification , Eukaryota/pathogenicity , Fish Diseases/parasitology , Fish Diseases/pathology , Prevalence , Protozoan Infections, Animal/pathology , Time Factors , Wyoming/epidemiology
7.
Dis Aquat Organ ; 63(1): 69-76, 2005 Jan 25.
Article in English | MEDLINE | ID: mdl-15759802

ABSTRACT

We examined the effects of both fish age and size on the development of resistance to whirling disease in Erwin strain rainbow trout. Previously, we demonstrated that juvenile rainbow trout became resistant to development of the disease when first exposed to triactinomyxons of the parasite Myxobolus cerebralis at about 9 wk post-hatch when raised at 12 degrees C, but ages and sizes of fish used in that experiment were confounded (Ryce EKN, Zale AV, MacConnell E [2004] Dis Aquat Org 59:225-233). In this study, rainbow trout of the same age and different sizes, and the same size and different ages, were exposed to the parasite to distinguish the influences of age and size. Fish were reared at 3 different water temperatures prior to exposure to produce groups with different growth rates and were exposed to the parasite at 7 or 9 wk post-hatch. Disease severity was affected by both age and size at first exposure, but the effects were not independent. An increase in fork length from 36 to 40 mm among fish exposed at 7 wk post-hatch did not confer increased resistance, but the same increase in size at 9 wk post-hatch did. Similarly, an increase in age from 7 to 9 wk post-hatch among fish exposed at 36 mm fork length did not confer increased resistance, but the same increase in age at 40 mm did. Rainbow trout must be both 9 wk post-hatch or older and at least 40 mm in fork length at time of exposure to exhibit enhanced resistance to whirling disease. Resistance to disease was not associated with the level of skeletal ossification.


Subject(s)
Fish Diseases/immunology , Fish Diseases/parasitology , Immunity, Innate/immunology , Oncorhynchus mykiss , Protozoan Infections, Animal/immunology , Age Factors , Animals , Body Size , Bone and Bones/pathology , Fish Diseases/mortality , Protozoan Infections, Animal/mortality , Spores, Protozoan/immunology , Staining and Labeling , Swimming/physiology , Temperature
8.
Dis Aquat Organ ; 59(3): 225-33, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15264719

ABSTRACT

We determined the ages at which juvenile rainbow trout Oncorhynchus mykiss became resistant to the effects of whirling disease following exposure to a range of parasite doses. Heretofore, the development and severity of whirling disease in salmonids was known to be generally dependent on the age or size of fish when first exposed to the triactinomyxon spores of Myxobolus cerebralis; larger, older individuals tended to be less diseased. However, no systematic determination had been made of the exact age at which fish become resistant to the development of the disease. We exposed rainbow trout at 9 ages (1 to 17 wk post-hatch) to 4 parasite dose levels (0, 100, 1000 and 10,000 triactinomyxons per fish). Disease severity was measured using mortality, clinical signs, microscopic pathology, and myxospore counts. Disease and mortality were substantially reduced when exposure to the parasite occurred for the first time at 9 wk post-hatch (756 degree-days at 12 degrees C) or older. High doses elicited more disease among the younger age groups, but the effect was dampened in groups exposed at about 9 to 11 wk post-hatch and absent thereafter. Rainbow trout reared in M. cerebralis-free waters for 9 wk post-hatch or longer, whether in the wild or in a hatchery situation, should experience greater survival and less disease than fish first exposed to the parasite at younger ages.


Subject(s)
Eukaryota , Fish Diseases/parasitology , Oncorhynchus mykiss , Phenotype , Protozoan Infections, Animal/pathology , Age Factors , Animals , Body Burden , Fish Diseases/mortality , Fish Diseases/pathology , Models, Biological , Motor Activity/physiology , Protozoan Infections, Animal/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...