Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-7204187

ABSTRACT

We have evaluated the use of an acoustic gas analyzer (AGA) for the measurement of total lung capacity (TLC) by single-breath helium dilution. The AGA has a rapid response time (0-90% response = 160 ms for 10% He), is linear for helium concentration of 0.1-10%, is stable over a wide range of ambient temperatures, and is small and portable. We plotted the output of the AGA vs. expired lung volume after a vital capacity breath of 10% He. However, since the AGA is sensitive to changes in speed of sound relative to air, the AGA output signal also reports an artifact due to alveolar gases. We corrected for this artifact by replotting a single-breath expiration after a vital capacity breath of room air. Mean alveolar helium concentration (HeA) was then measured by planimetry, using this alveolar gas curve as the base line. TLC was calculated using the HeA from the corrected AGA output and compared with TLC calculated from HeA simultaneously measured using a mass spectrometer (MS). In 12 normal subjects and 9 patients with chronic obstructive pulmonary disease (COPD) TLC-AGA and TLC-MS were compared by linear regression analysis; correlation coefficient (r) was 0.973 for normals and 0.968 for COPD patients (P less than 0.001). This single-breath; estimation of TLC using the corrected signal of the AGA vs. Expired volume seems ideally suited for the measurement of subdivisions of lung volume in field studies.


Subject(s)
Helium , Lung Volume Measurements/methods , Total Lung Capacity/methods , Acoustics , Forced Expiratory Volume , Humans , Total Lung Capacity/instrumentation , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL
...