Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896568

ABSTRACT

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Brain , Imaging, Three-Dimensional , Machine Learning , Humans , Imaging, Three-Dimensional/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Photography/methods , Dissection , Magnetic Resonance Imaging/methods , Neuropathology/methods , Neuroimaging/methods
2.
Brain ; 138(Pt 9): 2608-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26115676

ABSTRACT

The great majority of acute brain injury results from trauma or from disorders of the cerebrovasculature, i.e. ischaemic stroke or haemorrhage. These injuries are characterized by an initial insult that triggers a cascade of injurious cellular processes. The nature of these processes in spontaneous intracranial haemorrhage is poorly understood. Subarachnoid haemorrhage, a particularly deadly form of intracranial haemorrhage, shares key pathophysiological features with traumatic brain injury including exposure to a sudden pressure pulse. Here we provide evidence that axonal injury, a signature characteristic of traumatic brain injury, is also a prominent feature of experimental subarachnoid haemorrhage. Using histological markers of membrane disruption and cytoskeletal injury validated in analyses of traumatic brain injury, we show that axonal injury also occurs following subarachnoid haemorrhage in an animal model. Consistent with the higher prevalence of global as opposed to focal deficits after subarachnoid haemorrhage and traumatic brain injury in humans, axonal injury in this model is observed in a multifocal pattern not limited to the immediate vicinity of the ruptured artery. Ultrastructural analysis further reveals characteristic axonal membrane and cytoskeletal changes similar to those associated with traumatic axonal injury. Diffusion tensor imaging, a translational imaging technique previously validated in traumatic axonal injury, from these same specimens demonstrates decrements in anisotropy that correlate with histological axonal injury and functional outcomes. These radiological indicators identify a fibre orientation-dependent gradient of axonal injury consistent with a barotraumatic mechanism. Although traumatic and haemorrhagic acute brain injury are generally considered separately, these data suggest that a signature pathology of traumatic brain injury-axonal injury-is also a functionally significant feature of subarachnoid haemorrhage, raising the prospect of common diagnostic, prognostic, and therapeutic approaches to these conditions.


Subject(s)
Axons/pathology , Brain Injuries/diagnosis , Brain Injuries/etiology , Subarachnoid Hemorrhage/complications , Amyloid beta-Peptides/metabolism , Animals , Axons/diagnostic imaging , Brain/metabolism , Brain/pathology , Diffusion Tensor Imaging , Disease Models, Animal , Magnetic Resonance Imaging , Male , Mental Disorders/etiology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Neurofilament Proteins/metabolism , Statistics as Topic , Subarachnoid Hemorrhage/pathology , Time Factors , Ultrasonography
3.
J Neurotrauma ; 32(16): 1254-71, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25758167

ABSTRACT

Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI.


Subject(s)
Brain Injury, Chronic , Magnetic Resonance Imaging/methods , Post-Concussion Syndrome , White Matter , Adult , Brain Injury, Chronic/pathology , Brain Injury, Chronic/physiopathology , Eye Movement Measurements , Female , Functional Neuroimaging , Humans , Male , Middle Aged , Neuropsychological Tests , Post-Concussion Syndrome/pathology , Post-Concussion Syndrome/physiopathology , White Matter/pathology , White Matter/physiopathology
4.
J Neurotrauma ; 31(10): 889-98, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24367929

ABSTRACT

Fundamental questions remain unanswered about the longitudinal impact of blast-plus-impact complex traumatic brain injuries (TBI) from wars in Iraq and Afghanistan. This prospective, observational study investigated measures of clinical outcome in US military personnel evacuated to Landstuhl Regional Medical Center (LRMC) in Germany after such "blast-plus" concussive TBIs. Glasgow Outcome Scale-Extended assessments completed 6-12 months after injury indicated a moderate overall disability in 41/47 (87%) blast-plus TBI subjects and a substantial but smaller number (11/18, 61%, p=0.018) of demographically similar US military controls without TBI evacuated for other medical reasons. Cognitive function assessed with a neuropsychological test battery was not different between blast-plus TBI subjects and controls; performance of both groups was generally in the normal range. No subject was found to have focal neurological deficits. However, 29/47 (57%) of blast-plus subjects with TBI met all criteria for post-traumatic stress disorder (PTSD) versus 5/18 (28%) of controls (p=0.014). PTSD was highly associated with overall disability; 31/34 patients with PTSD versus 19/31 patients who did not meet full PTSD criteria had moderate to severe disability (p=0.0003). Symptoms of depression were also more severe in the TBI group (p=0.05), and highly correlated with PTSD severity (r=0.86, p<0.0001). Thus, in summary, high rates of PTSD and depression but not cognitive impairment or focal neurological deficits were observed 6-12 months after concussive blast-plus-impact complex TBI. Overall disability was substantially greater than typically reported in civilian non-blast concussive ("mild") patients with TBI, even with polytrauma. The relationship between these clinical outcomes and specific blast-related aspects of brain injuries versus other combat-related factors remains unknown.


Subject(s)
Blast Injuries/psychology , Brain Injuries/psychology , Depression/epidemiology , Stress Disorders, Post-Traumatic/epidemiology , Adult , Afghan Campaign 2001- , Blast Injuries/complications , Brain Injuries/complications , Depression/etiology , Disability Evaluation , Glasgow Coma Scale , Humans , Iraq War, 2003-2011 , Male , Middle Aged , Military Personnel/psychology , Neuropsychological Tests , Prospective Studies , Stress Disorders, Post-Traumatic/etiology , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...