Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(2): 1532-1540, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785186

ABSTRACT

Low-temperature deposited polycrystalline silicon waveguides are emerging as a flexible platform that allows for dense optoelectronic integration. Here, the optical transmission properties of poly-silicon waveguides have been characterized from the near-to-mid-infrared wavelength regime, extending the optical transmission well beyond previous reports in the telecom band. The poly-Si waveguides with a dimension of 3 µm × âˆ¼0.6 µm have been produced from pre-patterned amorphous silicon waveguides that are post-processed through laser melting, reflowing, and crystallization using a highly localized laser induced heat treatment at a wavelength of 532 nm. Low optical transmission losses (<3 dB cm-1) have been observed at 1.55 µm as well as across the wavelength range of 2-2.25 µm, aided by the relatively large waveguide heights that are enabled by the deposition process. The results demonstrate the suitability of low-temperature poly-silicon waveguides to find wide ranging applications within integrated mid-infrared systems.

2.
Opt Express ; 28(20): 29192-29201, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114823

ABSTRACT

We report nonlinear optical characterization of cm-long polycrystalline silicon (poly-Si) waveguides at telecom wavelengths. Laser post-processing of lithographically-patterned amorphous silicon deposited on silica-on-silicon substrates provides low-loss poly-Si waveguides with surface-tension-shaped boundaries. Achieving optical losses as low as 4 dB cm-1 enabled us to demonstrate effects of self-phase modulation (SPM) and two-photon absorption (TPA). Analysis of the spectral broadening and nonlinear losses with numerical modeling reveals the best fit values of the Kerr coefficient n2=4.5×10-18 m W-1 and TPA coefficient ßTPA=9.0×10-12 m2 W-1, which are within the range reported for crystalline silicon. On-chip low-loss poly-Si paves the way for flexible integration of nonlinear components in multi-layered photonic systems.

3.
ACS Appl Mater Interfaces ; 12(8): 9457-9467, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32008314

ABSTRACT

The ability to manipulate the composition of semiconductor alloys on demand and at nanometer-scale resolutions is a powerful tool that could be exploited to tune key properties such as the electronic band gap, mobility, and refractive index. However, existing methods to modify the composition involve altering the stoichiometry by temporal or spatial modulation of the process parameters during material growth, limiting the scalability and flexibility for device fabrication. Here, we report a laser processing method for localized tailoring of the composition in amorphous silicon-germanium (a-SiGe) nanoscale thin films on silicon substrates, postdeposition, by controlling phase segregation through the scan speed of the laser-induced molten zone. Laser-driven phase segregation at speeds adjustable from 0.1 to 100 mm s-1 allows access to previously unexplored solidification dynamics. The steady-state spatial distribution of the alloy constituents can be tuned directly by setting the laser scan speed constant to achieve indefinitely long Si1-xGex microstructures, exhibiting the full range of compositions (0 < x < 1). To illustrate the potential, we demonstrate a photodetection application by exploiting the laser-written polycrystalline SiGe microstripes, showing tunability of the optical absorption edge over a wavelength range of 200 nm. Our method can be applied to pseudobinary alloys of ternary semiconductors, metals, ceramics, and organic crystals, which have phase diagrams similar to those of SiGe alloys. This study opens a route for direct laser writing of novel devices made of alloy microstructures with tunable composition profiles, including graded-index waveguides and metasurfaces, multispectral photodetectors, full-spectrum solar cells, and lateral heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...