Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 9(8): 809-814, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30128072

ABSTRACT

We report the discovery of a novel series of 3-cinnoline carboxamides as highly potent and selective ataxia telangiectasia mutated (ATM) kinase inhibitors. Optimization of this series focusing on potency and physicochemical properties (especially permeability) led to the identification of compound 21, a highly potent ATM inhibitor (ATM cell IC50 0.0028 µM) with excellent kinase selectivity and favorable physicochemical and pharmacokinetics properties. In vivo, 21 in combination with irinotecan showed tumor regression in the SW620 colorectal tumor xenograft model, superior inhibition to irinotecan alone. Compound 21 was selected for preclinical evaluation alongside AZD0156.

2.
J Med Chem ; 61(9): 3823-3841, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29683659

ABSTRACT

ATM inhibitors, such as 7, have demonstrated the antitumor potential of ATM inhibition when combined with DNA double-strand break-inducing agents in mouse xenograft models. However, the properties of 7 result in a relatively high predicted clinically efficacious dose. In an attempt to minimize attrition during clinical development, we sought to identify ATM inhibitors with a low predicted clinical dose (<50 mg) and focused on strategies to increase both ATM potency and predicted human pharmacokinetic half-life (predominantly through the increase of volume of distribution). These efforts resulted in the discovery of 64 (AZD0156), an exceptionally potent and selective inhibitor of ATM based on an imidazo[4,5- c]quinolin-2-one core. 64 has good preclinical phamacokinetics, a low predicted clinical dose, and a high maximum absorbable dose. 64 has been shown to potentiate the efficacy of the approved drugs irinotecan and olaparib in disease relevant mouse models and is currently undergoing clinical evaluation with these agents.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Design , Pyridines/pharmacokinetics , Quinolines/pharmacokinetics , Quinolones/pharmacology , Quinolones/pharmacokinetics , Administration, Oral , Ataxia Telangiectasia Mutated Proteins/chemistry , Ataxia Telangiectasia Mutated Proteins/metabolism , Biological Availability , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors , Pyridines/administration & dosage , Pyridines/chemistry , Quinolines/administration & dosage , Quinolines/chemistry , Quinolones/administration & dosage , Quinolones/chemistry , Structure-Activity Relationship , Substrate Specificity
3.
ACS Med Chem Lett ; 7(1): 94-9, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26819673

ABSTRACT

A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.

4.
Chem Res Toxicol ; 28(10): 1991-9, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26351880

ABSTRACT

The oral dipeptidyl peptidase 1 (DPP1) inhibitor AZD5248 showed aortic binding in a rat quantitative whole-body autoradiography (QWBA) study, and its development was terminated prior to human dosing. A mechanistic hypothesis for this finding was established invoking reactivity with aldehydes involved in the cross-linking of elastin, a major component of aortic tissue. This was tested by developing a simple aldehyde chemical reactivity assay and a novel in vitro competitive covalent binding assay. Results obtained with AZD5248, literature compounds, and close analogues of AZD5248 support the mechanistic hypothesis and provide validation for the use of these assays in a two tier screening approach to support lead optimization. The strengths and limitations of these assays are discussed.


Subject(s)
Aorta/metabolism , Biphenyl Compounds/metabolism , Cathepsin C/antagonists & inhibitors , Protease Inhibitors/metabolism , Animals , Autoradiography , Biphenyl Compounds/chemistry , Cathepsin C/metabolism , Microscopy, Electron , Protease Inhibitors/chemistry , Rats , Rats, Wistar
5.
J Med Chem ; 57(21): 8984-98, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25286150

ABSTRACT

Agonism of GPR119 is viewed as a potential therapeutic approach for the treatment of type II diabetes and other elements of metabolic syndrome. During progression of a previously disclosed candidate 1 through mice toxicity studies, we observed tonic-clonic convulsions in several mice at high doses. An in vitro hippocampal brain slice assay was used to assess the seizure liability of subsequent compounds, leading to the identification of an aryl sulfone as a replacement for the 3-cyano pyridyl group. Subsequent optimization to improve the overall profile, specifically with regard to hERG activity, led to alkyl sulfone 16. This compound did not cause tonic-clonic convulsions in mice, had a good pharmacokinetic profile, and displayed in vivo efficacy in murine models. Importantly, it was shown to be effective in wild-type (WT) but not GPR119 knockout (KO) animals, consistent with the pharmacology observed being due to agonism of GPR119.


Subject(s)
Epilepsy, Tonic-Clonic/prevention & control , Oxadiazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Dogs , Ether-A-Go-Go Potassium Channels/drug effects , Female , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Male , Mice, Inbred C57BL , Mice, Knockout , Oxadiazoles/chemistry , Oxadiazoles/therapeutic use , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 23(11): 3175-9, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23628336

ABSTRACT

A series of conformationally restricted GPR119 agonists were prepared based around a 3,8-diazabicyclo[3.2.1]octane scaffold. Examples were found to have markedly different pharmacology in mouse and human despite similar levels of binding to the receptor. This highlights the large effects on GPCR phamacology that can result from small structural changes in the ligand, together with inter-species differences between receptors.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Biological Availability , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Cell Membrane Permeability/drug effects , Cyclic AMP/metabolism , Dogs , Half-Life , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Madin Darby Canine Kidney Cells , Mice , Protein Binding , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 55(20): 8827-37, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22984809

ABSTRACT

Rational structure-based design has yielded highly potent inhibitors of cathepsin K (Cat K) with excellent physical properties, selectivity profiles, and pharmacokinetics. Compounds with a 3,4-(CH3O)2Ph motif, such as 31, were found to have excellent metabolic stability and absorption profiles. Through metabolite identification studies, a reactive metabolite risk was identified with this motif. Subsequent structure-based design of isoteres culminated in the discovery of an optimized and balanced inhibitor (indazole, 38).


Subject(s)
Cathepsin K/antagonists & inhibitors , Cyclohexanes/chemical synthesis , Indazoles/chemical synthesis , Animals , Blood Proteins/metabolism , Cells, Cultured , Cyclohexanes/pharmacokinetics , Cyclohexanes/pharmacology , Drug Design , Hepatocytes/metabolism , Humans , Indazoles/pharmacokinetics , Indazoles/pharmacology , Male , Models, Molecular , Protein Binding , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 22(17): 5563-8, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22858142

ABSTRACT

The discovery of nitrile compound 4, a potent inhibitor of Cathepsin K (Cat K) with good bioavailability in dog is described. The compound was used to demonstrate target engagement and inhibition of Cat K in an in vivo dog PD model. The margin to hERG ion channel inhibition was deemed too low for a clinical candidate and an optimisation program to find isosteres or substitutions on benzothiazole group led to the discovery of 20, 24 and 27; all three free from hERG inhibition.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cathepsin K/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Nitriles/chemistry , Nitriles/pharmacology , Animals , Benzothiazoles/metabolism , Benzothiazoles/pharmacokinetics , Cathepsin K/metabolism , Dogs , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Microsomes, Liver/metabolism , Models, Molecular , Nitriles/metabolism , Nitriles/pharmacokinetics , Rats , Structure-Activity Relationship
9.
J Med Chem ; 55(14): 6363-74, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22742641

ABSTRACT

Directed screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information. Optimization using small substituents, knowledge from matched molecular pairs, and control of lipophilicity yielded compounds very close to the desired profile, of which 34 (AZD4996) was selected on the basis of pharmacokinetic profile.


Subject(s)
Carbolines/pharmacology , Cathepsin K/antagonists & inhibitors , Indoles/pharmacology , Osteoarthritis/drug therapy , Protease Inhibitors/pharmacology , Animals , Carbolines/metabolism , Carbolines/pharmacokinetics , Carbolines/therapeutic use , Cathepsin K/chemistry , Dogs , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Indoles/therapeutic use , Inhibitory Concentration 50 , Male , Models, Molecular , Osteoarthritis/enzymology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/therapeutic use , Protein Conformation , Rats , Substrate Specificity
10.
J Med Chem ; 55(11): 5361-79, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22545772

ABSTRACT

G protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound. Small-molecule crystallography was utilized to understand the intermolecular interactions in the solid state and resulted in a switch from an aryl sulphone to a 3-cyanopyridyl motif. The compound was shown to be effective in wild-type but not knockout animals, confirming that the biological effects were due to GPR119 agonism.


Subject(s)
Oxadiazoles/chemical synthesis , Pyridines/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Animals , Biological Availability , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Crystallography, X-Ray , Dogs , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries , Solubility , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry , Sulfones/pharmacology
11.
Bioorg Med Chem Lett ; 21(14): 4215-9, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21669521

ABSTRACT

Directed screening has identified a novel series of MMP13 inhibitors that possess good levels of activity whilst possessing excellent selectivity over related MMPs. The binding mode of the series has been solved by co-crystallisation and demonstrates an interesting mode of inhibition without interaction with the catalytic zinc atom.


Subject(s)
Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemistry , Zinc/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Matrix Metalloproteinase 13/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship
12.
Bioorg Med Chem ; 18(21): 7486-96, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20869876

ABSTRACT

The displacement of probes that bind selectively to subdomains IIA or IIIA on human serum albumin (HSA) by competing compounds has been followed using fluorescence spectroscopy, and has therefore been used to assign a primary binding site for these compounds in the presence and absence of fatty acids. The crystal structures have also been solved for three compounds: a matched pair of carboxylic acids whose binding strength to HSA unexpectedly decreased as the lipophilicity increased; and a highly bound sulphonamide that appeared not to displace the probes in the displacement assay. The crystallography results support the findings from the fluorescence displacement assay. The results indicate that drug binding to subdomain IB might also be important location for certain compounds.


Subject(s)
Pharmaceutical Preparations/chemistry , Serum Albumin/chemistry , Binding Sites , Crystallography, X-Ray , Drug Interactions , Humans , Protein Binding , Protein Structure, Tertiary , Serum Albumin/metabolism , Spectrometry, Fluorescence
13.
Bioorg Med Chem Lett ; 19(16): 4832-5, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19574045

ABSTRACT

A novel approach to inhibition of the alphavbeta3 integrin is described, which uses compounds designed to generate nM potency without using the arginine binding site.


Subject(s)
Integrin alphaVbeta3/antagonists & inhibitors , Animals , Binding Sites , Computer Simulation , Drug Design , Humans , Integrin alphaVbeta3/metabolism , Oligopeptides/chemistry , Rats , Small Molecule Libraries , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 19(4): 1136-8, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19168354

ABSTRACT

A quantitative assay involving the reaction of nitriles with glutathione and cysteine has been used as a simple in vitro screen to assess potential toxicity risk of candidate compounds in drug discovery. Studies have indicated that, when benchmarked with selected compounds, the reaction of the nitriles with glutathione can provide a useful tool for deciding whether or not to progress compounds in the absence of radiolabelling studies.


Subject(s)
Drug Discovery , Nitriles/toxicity , Cysteine/analysis , Cysteine/toxicity , Glutathione/analysis , Glutathione/toxicity , Molecular Structure , Nifedipine/analogs & derivatives , Nifedipine/pharmacology , Nitriles/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...