Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(6): 3702-3714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38847593

ABSTRACT

This study presents the results of three-dimensional (3D) propagation modeling of noise from a transiting bulk carrier vessel. In the simulated scenario, the surface vessel is moving past a bottom-mounted hydrophone system. Sound levels are estimated in decidecade frequency bands as the vessel transits past the hydrophone, and the simulation results are compared against real measured data. The modelling is performed using the program AMPLE, which is based on the wide-angle mode parabolic equation theory for simulating 3D broadband acoustic fields in a shallow sea. The model is used to investigate the effect of 3D phenomena on the surface vessel sound propagation. It is shown that an inaccuracy of the noise simulation associated with the use of a two-dimensional model can be as high as 7-10 dB for certain distances and for frequency bands over which a major part of the source energy is distributed. An approach to the selection of data-adjusted media parameters based on the Bayesian optimization is suggested, and the influence of the various parameters on the sound levels is discussed.

2.
J Acoust Soc Am ; 153(3): 1506, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37002101

ABSTRACT

Performing reproducible vessel source level (SL) measurements is complicated by seabed reflections in shallow water. In deep water, with a hydrophone far from the seabed, it is straightforward to estimate propagation loss (PL) and convert sound pressure level (SPL) into SL using the method codified in the international standard ISO 17208-2 [International Organization for Standardization (ISO), Geneva, Switzerland (2019)]. Estimating PL is more difficult in shallow water because of the way that sound reflects from the seabed such that multiple propagation paths contribute to SPL. Obtaining reproducible SL measurements in shallow water requires straightforward and robust methods to estimate PL. From May to July 2021, a field experiment evaluated different methods of measuring vessel SL in shallow water. The same vessels were measured many times in water depths of 30, 70, and 180 m. In total, 12 079 SL measurements were obtained from 1880 vessel transits and 16 hydrophones, distributed across 3 moored vertical line arrays and 2 moored horizontal line arrays. The experiment confirmed that it is possible to obtain reproducible vessel SL estimates in shallow water comparable to within ±2.5 dB of ISO-compliant measurements in deep water and repeatable to within ±1.5 dB.

3.
J Acoust Soc Am ; 152(3): 1547, 2022 09.
Article in English | MEDLINE | ID: mdl-36182327

ABSTRACT

Measurements of the source levels of 9880 passes of 3188 different large commercial ships from the Enhancing Cetacean Habitat and Observation (ECHO) program database were used to investigate the dependencies of vessel underwater noise emissions on several vessel design parameters and operating conditions. Trends in the dataset were analyzed using functional regression analysis, which is an extension of standard regression analysis and represents a response variable (decidecade band source level) as a continuous function of a predictor variable (frequency). The statistical model was applied to source level data for six vessel categories: cruise ships, container ships, bulk carriers, tankers, tugs, and vehicle carriers. Depending on the frequency band and category, the functional regression model explained approximately 25%-50% of the variance in the ECHO dataset. The two main operational parameters, speed through water and actual draft, were the predictors most strongly correlated with source levels in all of the vessel categories. Vessel size (represented via length overall) was the design parameter with the strongest correlation to underwater radiated noise for three categories of vessels (bulkers, containers, and tankers). Other design parameters that were investigated (engine revolutions per minute, engine power, design speed, and vessel age) had weaker but nonetheless significant correlations with source levels.


Subject(s)
Noise , Ships , Ecosystem , Regression Analysis , Water
4.
Mar Pollut Bull ; 174: 113124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34915419

ABSTRACT

The habitat of the endangered southern resident killer whale (SRKW) overlaps major international shipping lanes near the Port of Vancouver, British Columbia. Shipping is a dominant source of underwater noise, which can hinder SRKW key life functions. To reduce environmental pressure on the SRKWs, Vancouver Fraser Port Authority offers incentives for quieter ships. However, the absence of a widely accepted underwater radiated noise (URN) measurement procedure hinders the determination of relative quietness. We review URN measurement procedures, summarizing results to date from two Canadian-led projects aimed at improving harmonization of shallow-water URN measurement procedures: One supports the International Organization for Standardization (ISO) in the development of a URN measurement standard; the other supports the alignment of URN measurement procedures developed by ship classification societies. Weaknesses in conventional shallow-water URN metrics are identified, and two alternative metrics proposed. Optimal shallow-water measurement geometry is identified.


Subject(s)
Noise , Whale, Killer , Animals , British Columbia , Ecosystem , Ships
5.
J Acoust Soc Am ; 150(5): 3675, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34852616

ABSTRACT

The acoustical output of marine-seismic airguns is determined from recordings of the sound pressure made on hydrophones suspended below a floating barge from which the airguns are also deployed. The signals from multiple types of airguns are considered and each type is operated over a range of deployment depths and chamber pressures. The acoustical output is characterized in terms of a "source waveform" with dimensions of the pressure-times-distance and in an infinite idealized medium, could be divided by the source-receiver distance to give the sound pressure at that receiver. In more realistic environments, the source waveform may be used to predict the pressure at any arbitrary receiver position simply by the application of a time-domain transfer function describing the propagation between the source and receiver. The sources are further characterized by metrics such as the peak source waveform and energy source level. These metrics are calculated in several frequency bands so that the resulting metrics can be used to characterize the acoustical output of the airguns in terms of their utility for seismic image-processing or possible effects on marine life. These characterizations provide reference data for the calibration of models that predict the airguns' acoustical output. They are validated via comparisons of the acoustic pressure measured on far-field hydrophones and predicted using the source waveforms. Comparisons are also made between empirically derived expressions relating the acoustic metrics to the chamber volume, chamber pressure, and deployment depth and similar expressions from the literature.

6.
J Acoust Soc Am ; 146(1): 340, 2019 07.
Article in English | MEDLINE | ID: mdl-31370655

ABSTRACT

During 2017, the Vancouver Fraser Port Authority's Enhancing Cetacean Habitat and Observation program carried out a two-month voluntary vessel slowdown trial to determine whether slowing to 11 knots was an effective method for reducing underwater radiated vessel noise. The trial was carried out in Haro Strait, British Columbia, in critical habitat of endangered southern resident killer whales. During the trial, vessel noise measurements were collected next to shipping lanes on two hydrophones inside the Haro Strait slowdown zone, while a third hydrophone in Strait of Georgia measured vessels noise outside the slowdown zone. Vessel movements were tracked using the automated identification system (AIS), and vessel pilots logged slowdown participation information for each transit. An automated data processing system analyzed acoustical and AIS data from the three hydrophone stations to calculate radiated noise levels and monopole source levels (SLs) of passing vessels. Comparing measurements of vessels participating in the trial with measurements from control periods before and after the trial showed that slowing down was an effective method for reducing mean broadband SLs for five categories of piloted commercial vessels: containerships (11.5 dB), cruise vessels (10.5 dB), vehicle carriers (9.3 dB), tankers (6.1 dB), and bulkers (5.9 dB).

7.
Mar Pollut Bull ; 136: 177-200, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509799

ABSTRACT

This study assesses vessel-noise exposure levels for Southern Resident Killer Whales (SRKW) in the Salish Sea. Kernel Density Estimation (KDE) was used to delineate SRKW summer core areas. Those areas were combined with the output of a regional cumulative noise model describing sound level variations generated by commercial vessels (1/3-octave-bands from 10 Hz to 63.1 kHz). Cumulative distribution functions were used to evaluate SRKW's noise exposure from 15 vessel categories over three zones located within the KDE. Median cumulative noise values were used to group categories based on the associated exposure levels. Ferries, Tugboats, Vehicle Carriers, Recreational Vessels, Containers, and Bulkers showed high levels of exposure (Leq-50th > 90 dB re 1 µPa) within SRKW core areas. Management actions aiming at reducing SRKW noise exposure during the summer should target the abovementioned categories and take into consideration the spatial distribution of their levels of exposure, their mechanical and their operational characteristics.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Noise/adverse effects , Ships , Whale, Killer/growth & development , Animals , British Columbia , Oceans and Seas , Seasons , Washington
8.
J Acoust Soc Am ; 143(1): 450, 2018 01.
Article in English | MEDLINE | ID: mdl-29390745

ABSTRACT

Underwater noise from impact pile driving of 512 -m-long conductor casings was measured at a deep-water offshore oil platform in the Santa Barbara Channel. Beamforming measurements, obtained with a vertical array, confirmed that the primary wave front generated by hammering the conductor casing was a Mach cone propagating at an angle of 17.6° below the horizontal. Analysis of the processed array data also revealed the presence of high-frequency secondary waves at angles steeper than 45° below the horizontal. These secondary waves, which appeared to be generated near the sea-surface, dominated the acoustic spectrum of the pulses at frequencies above 1 kHz. Shallow hydrophone measurements outside the Mach cone showed clear evidence of a surface shadow zone, which was caused by the strong downward directivity of the source. Although reflected waves, diffraction, and secondary waves still produced sound inside the surface shadow zone, sound levels were 10-15 dB lower in this region. Long-term hydrophone measurements showed that there was little difference (±1 dB) in mean sound levels from impact hammering of different conductors installed at the same platform over three months.

9.
Adv Exp Med Biol ; 875: 565-72, 2016.
Article in English | MEDLINE | ID: mdl-26611005

ABSTRACT

The potential impacts of pile-driving noise on Hudson River sturgeon during construction of the New NY Bridge were predicted. Abundance data for shortnose and Atlantic sturgeon derived from fisheries sampling were combined with data about the spatial extent of pile-driving noise. This approach was used to calculate the number of sturgeon that could occur within sound level isopleths exceeding peak and cumulative noise criteria used by the National Marine Fisheries Service to determine the incidental take of sturgeon. The number of sturgeon subject to the potential onset of physiological effects during pile driving was predicted to be 35-41 fish for each species.


Subject(s)
Construction Industry , Endangered Species , Environment , Environmental Monitoring/methods , Fishes/physiology , Noise , Animals
10.
Adv Exp Med Biol ; 875: 861-70, 2016.
Article in English | MEDLINE | ID: mdl-26611043

ABSTRACT

A new bridge will be constructed to replace the aging Tappan Zee Bridge over the Hudson River in New York. Construction will potentially result in hydroacoustic impacts to the local fish fauna. As a consequence, a substantial environmental impact analysis had to be conducted to obtain construction permits. This paper describes the process of environmental analysis and some of the results of the studies that led up to the final permitting. The process included modeling of pile-driving acoustics, analysis of river ambient noise, analysis of test piling, and observations on fish behavior during these tests.


Subject(s)
Construction Industry , Environment , Noise , Acoustics , Animals , Environmental Monitoring , Fishes/physiology , Models, Theoretical , New York , Water
11.
J Acoust Soc Am ; 135(1): EL35-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24437854

ABSTRACT

Most attention about the acoustic effects of marine survey sound sources on marine mammals has focused on airgun arrays, with other common sources receiving less scrutiny. Sound levels above hearing threshold (sensation levels) were modeled for six marine mammal species and seven different survey sources in shallow water. The model indicated that odontocetes were most likely to hear sounds from mid-frequency sources (fishery, communication, and hydrographic systems), mysticetes from low-frequency sources (sub-bottom profiler and airguns), and pinnipeds from both mid- and low-frequency sources. High-frequency sources (side-scan and multibeam) generated the lowest estimated sensation levels for all marine mammal species groups.


Subject(s)
Acoustics , Auditory Perception , Environmental Monitoring/methods , Mammals/psychology , Noise , Animals , Auditory Threshold , Caniformia/physiology , Caniformia/psychology , Cetacea/physiology , Cetacea/psychology , Hearing , Mammals/classification , Mammals/physiology , Models, Theoretical , Oceans and Seas , Pressure , Time Factors , Water
12.
J Acoust Soc Am ; 132(5): EL423-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23145705

ABSTRACT

Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high noise levels in critical habitats for endangered resident killer whales, exceeding limits of "good conservation status" under the EU Marine Strategy Framework Directive. Error analysis proved that rough calculations of noise occurrence and propagation can form a basis for management processes, because spending resources on unnecessary detail is wasteful and delays remedial action.


Subject(s)
Acoustics , Ecosystem , Environmental Monitoring/methods , Noise, Transportation , Ships , Acoustics/instrumentation , Animals , Endangered Species , Environmental Monitoring/instrumentation , Motion , Oceans and Seas , Population Density , Pressure , Sound Spectrography , Time Factors , Transducers, Pressure , Water , Whale, Killer
13.
J Acoust Soc Am ; 117(6): 3958-71, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16018498

ABSTRACT

Seismic airguns produce considerable amounts of acoustic energy that have the potential to affect marine life. This study investigates the effects of exposure to a 730 in.3 airgun array on hearing of three fish species in the Mackenzie River Delta, the northern pike (Esox lucius), broad whitefish (Coregonus nasus), and lake chub (Couesius plumbeus). Fish were placed in cages in the 1.9 m of water and exposed to five or 20 airgun shots, while controls were placed in the same cage but without airgun exposure. Hearing in both exposed and control fish were then tested using the auditory brainstem response (ABR). Threshold shifts were found for exposed fish as compared to controls in the northern pike and lake chub, with recovery within 24 hours of exposure, while there was no threshold shift in the broad whitefish. It is concluded that these three species are not likely to be substantially impacted by exposure to an airgun array used in a river seismic survey. Care must be taken, however, in extrapolation to other species and to fishes exposed to airguns in deeper water or where the animals are exposed to a larger number of airgun shots over a longer period of time.

SELECTION OF CITATIONS
SEARCH DETAIL
...