Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6324, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816746

ABSTRACT

The structure of chromatin plays pivotal roles in regulating gene transcription, DNA replication and repair, and chromosome segregation. This structure, however, remains elusive. Here, using cryo-FIB and cryo-ET, we delineate the 3D architecture of native chromatin fibres in intact interphase human T-lymphoblasts and determine the in situ structures of nucleosomes in different conformations. These chromatin fibres are not structured as uniform 30 nm one-start or two-start filaments but are composed of relaxed, variable zigzag organizations of nucleosomes connected by straight linker DNA. Nucleosomes with little H1 and linker DNA density are distributed randomly without any spatial preference. This work will inspire future high-resolution investigations on native chromatin structures in situ at both a single-nucleosome level and a population level under many different cellular conditions in health and disease.


Subject(s)
Chromatin , Nucleosomes , Humans , Histones/metabolism , DNA/chemistry , Molecular Conformation
2.
J Am Chem Soc ; 145(21): 11659-11668, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37200045

ABSTRACT

The phycobilisome is the primary light-harvesting antenna in cyanobacterial and red algal oxygenic photosynthesis. It maintains near-unity efficiency of energy transfer to reaction centers despite relying on slow exciton hopping along a relatively sparse network of highly fluorescent phycobilin chromophores. How the complex maintains this high efficiency remains unexplained. Using a two-dimensional electronic spectroscopy polarization scheme that enhances energy transfer features, we directly watch energy flow in the phycobilisome complex of Synechocystis sp. PCC 6803 from the outer phycocyanin rods to the allophycocyanin core. The observed downhill flow of energy, previously hidden within congested spectra, is faster than timescales predicted by Förster hopping along single rod chromophores. We attribute the fast, 8 ps energy transfer to interactions between rod-core linker proteins and terminal rod chromophores, which facilitate unidirectionally downhill energy flow to the core. This mechanism drives the high energy transfer efficiency in the phycobilisome and suggests that linker protein-chromophore interactions have likely evolved to shape its energetic landscape.


Subject(s)
Phycobilisomes , Synechocystis , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Photosynthesis , Energy Transfer , Synechocystis/chemistry
3.
Sci Adv ; 8(6): eabj4437, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138895

ABSTRACT

Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.

4.
Biodes Res ; 2022: 9782712, 2022.
Article in English | MEDLINE | ID: mdl-37850122

ABSTRACT

The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.

5.
Biochim Biophys Acta Bioenerg ; 1861(4): 148064, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31421078

ABSTRACT

Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700-800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.


Subject(s)
Acclimatization/radiation effects , Energy Transfer/radiation effects , Light , Photosynthesis/radiation effects , Synechococcus/physiology , Chlorophyll/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Phycobilisomes/metabolism , Spectrometry, Fluorescence , Synechococcus/radiation effects
6.
Nat Plants ; 4(6): 391, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29844411

ABSTRACT

In the version of this Article originally published, the authors incorrectly labelled the timescale in Fig. 6b as milliseconds (ms) on the x axis and the indicated half-life values; the correct units are microseconds (µs). The figure has now been amended in all versions of the Article.

7.
Nat Plants ; 4(2): 116-127, 2018 02.
Article in English | MEDLINE | ID: mdl-29379151

ABSTRACT

Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Spinacia oleracea/physiology , Carbon Cycle , Chloroplasts/metabolism , Cytochromes b6/metabolism , Darkness , Dimerization , Electron Transport , Light , Phosphorylation , Spinacia oleracea/radiation effects , Spinacia oleracea/ultrastructure , Thylakoids/metabolism
8.
Plant Cell ; 29(5): 1119-1136, 2017 05.
Article in English | MEDLINE | ID: mdl-28364021

ABSTRACT

Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used to build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b6f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers.


Subject(s)
Cyanobacteria/metabolism , Photosystem I Protein Complex/metabolism , Synechococcus/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism
9.
Parallel Comput ; 55: 17-27, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27274603

ABSTRACT

The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

SELECTION OF CITATIONS
SEARCH DETAIL
...