Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 21(1): 1101, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702177

ABSTRACT

BACKGROUND: The survival of coronaviruses are influenced by weather conditions and seasonal coronaviruses are more common in winter months. We examine the seasonality of respiratory infections in England and Wales and the associations between weather parameters and seasonal coronavirus cases. METHODS: Respiratory virus disease data for England and Wales between 1989 and 2019 was extracted from the Second-Generation Surveillance System (SGSS) database used for routine surveillance. Seasonal coronaviruses from 2012 to 2019 were compared to daily average weather parameters for the period before the patient's specimen date with a range of lag periods. RESULTS: The seasonal distribution of 985,524 viral infections in England and Wales (1989-2019) showed coronavirus infections had a similar seasonal distribution to influenza A and bocavirus, with a winter peak between weeks 2 to 8. Ninety percent of infections occurred where the daily mean ambient temperatures were below 10 °C; where daily average global radiation exceeded 500 kJ/m2/h; where sunshine was less than 5 h per day; or where relative humidity was above 80%. Coronavirus infections were significantly more common where daily average global radiation was under 300 kJ/m2/h (OR 4.3; CI 3.9-4.6; p < 0.001); where average relative humidity was over 84% (OR 1.9; CI 3.9-4.6; p < 0.001); where average air temperature was below 10 °C (OR 6.7; CI 6.1-7.3; p < 0.001) or where sunshine was below 4 h (OR 2.4; CI 2.2-2.6; p < 0.001) when compared to the distribution of weather values for the same time period. Seasonal coronavirus infections in children under 3 years old were more frequent at the start of an annual epidemic than at the end, suggesting that the size of the susceptible child population may be important in the annual cycle. CONCLUSIONS: The dynamics of seasonal coronaviruses reflect immunological, weather, social and travel drivers of infection. Evidence from studies on different coronaviruses suggest that low temperature and low radiation/sunlight favour survival. This implies a seasonal increase in SARS-CoV-2 may occur in the UK and countries with a similar climate as a result of an increase in the R0 associated with reduced temperatures and solar radiation. Increased measures to reduce transmission will need to be introduced in winter months for COVID-19.


Subject(s)
COVID-19 , Respiratory Tract Infections , Child , Child, Preschool , Humans , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Seasons , Weather
2.
Environ Int ; 127: 430-441, 2019 06.
Article in English | MEDLINE | ID: mdl-30959308

ABSTRACT

Hot weather can exacerbate health conditions such as cardiovascular and respiratory diseases, and lead to heat stroke and death. In built up areas, temperatures are commonly observed to be higher than those in surrounding rural areas, due to the Urban Heat Island (UHI) effect. Climate change and increasing urbanisation mean that future populations are likely to be at increased risk of overheating in cities, although building and city scale interventions have the potential to reduce this risk. We use a regional weather model to assess the potential effect of one type of urban intervention - reflective 'cool' roofs - to reduce local ambient temperatures, and the subsequent impact on heat-related mortality in the West Midlands, UK, with analysis undertaken for the summer of 2006, as well as two shorter heatwave periods in 2006 and 2003. We show that over a summer season, the population-weighted UHI intensity (the difference between simulated urban and rural temperature) was 1.1 °C on average, but 1.8 °C when including only night times, and reached a maximum of 9 °C in the West Midlands. Our results suggest that the UHI contributes up to 40% of heat related mortality over the summer period and that cool roofs implemented across the whole city could potentially offset 18% of seasonal heat-related mortality associated with the UHI (corresponding to 7% of total heat-related mortality). For heatwave periods, our modelling suggests that cool roofs could reduce city centre daytime 2 m air temperature by 0.5 °C on average, and up to a maximum of ~3 °C. Cool roofs reduced average UHI intensity by ~23%, and reduced heat related mortality associated with the UHI by ~25% during a heatwave. Cool roofs were most effective at reducing peak temperatures during the daytime, and therefore have the potential to limit dangerous extreme temperatures during heatwaves. Temperature reductions were dependent on the category of buildings where cool roofs were applied; targeting only commercial and industrial type buildings contributed more than half of the reduction for heatwave periods. Our modelling suggested that modifying half of all industrial/commercial urban buildings could have the same impact as modifying all high-intensity residential buildings in the West Midlands.


Subject(s)
Cold Temperature , Hot Temperature , Cities , Climate Change , Seasons , Urban Population , Urbanization , Weather
3.
Sci Total Environ ; 610-611: 678-690, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28822935

ABSTRACT

Heatwaves can lead to a range of adverse impacts including increased risk of illness and mortality; the heatwave in August 2003 has been associated with ~70,000 deaths across Europe. Due to climate change, heatwaves are likely to become more intense, more frequent and last longer in the future. A number of factors may influence risks associated with heat exposure, such as population age, housing type, and location within the Urban Heat Island, and such factors may not be evenly distributed spatially across a region. We simulated and analysed two major heatwaves in the UK, in August 2003 and July 2006, to assess spatial vulnerability to heat exposure across the West Midlands, an area containing ~5 million people, and how ambient temperature varies in relation to factors that influence heat-related health effects, through weighting of ambient temperatures according to distributions of these factors across an urban area. Additionally we present quantification of how particular centres such as hospitals are exposed to the UHI, by comparing temperatures at these locations with average temperatures across the region, and presenting these results for both day and night times. We find that UHI intensity was substantial during both heatwaves, reaching a maximum of +9.6°C in Birmingham in July 2006. Previous work has shown some housing types, such as flats and terraced houses, are associated with increased risk of overheating, and our results show that these housing types are generally located within the warmest parts of the city. Older age groups are more susceptible to the effects of heat. Our analysis of distribution of population based on age group showed there is only small spatial variation in ambient temperature that different age groups are exposed to. Analysis of relative deprivation across the region indicates more deprived populations are located in the warmest parts of the city.


Subject(s)
Hot Temperature , Urban Population , Cities , Climate Change , Humans , Risk Assessment , United Kingdom
4.
Trends Plant Sci ; 5(1): 12-7, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10637656

ABSTRACT

Phytoplankton respond to variations in light intensity as they are mixed through the water column. Changes in pigment content are characteristic of the relatively slow response of 'sun-shade' photoacclimation that occurs on timescales typical of mixing in the open ocean. In estuaries, the variations are much faster and induce correspondingly rapid changes in the activity (rather than abundance) of different components of the photosynthetic apparatus. These components modulate light harvesting and Calvin cycle activity, or protect the pigment bed from excess energy absorption. When the protective capacity is exceeded, photoinhibition occurs. All these mechanisms modulate the rate of photosynthesis in situ.


Subject(s)
Marine Biology , Photosynthesis/physiology , Phytoplankton/physiology , Water , Light , Motion , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...