Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(8): 5234-5246, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35357815

ABSTRACT

Large amounts of terrigenous organic matter (TOM) are delivered to the ocean every year. However, removal processes of TOM in the ocean are still poorly constrained. Here, we report results from a 339-day dark incubation experiment with a unique system holding a vertically stratified freshwater-seawater column. The quality and quantity of dissolved organic matter (DOM), RNA-based size-fraction microbial communities, and environmental factors were high-frequency-monitored. Microbial processes impacted TOM composition, including an increased DOM photobleaching rate with incubation time. The mixed layer had changed the bacterial community structure, diversity, and higher oxygen consumption rate. A two-end member modeling analysis suggested that estimated nutrient concentrations and prokaryotic abundance were lower, and total dissolved organic carbon was higher than that of the measured values. These results imply that DOM biodegradation was stimulated during freshwater-seawater mixing. In the bottom layer, fluorescent DOM components increased with the incubation time and were significantly positively related to highly unsaturated, oxygenated, and presumably aromatic compound molecular formulas. These results suggest that surfaced-derived TOM sinking leads to increased DOM transformation and likely results in carbon storage in the bottom water. Overall, these results suggest that microbial transforming TOM plays more important biogeochemical roles in estuaries and coastal oceans than what we know before.


Subject(s)
Dissolved Organic Matter , Water , Biodegradation, Environmental , Estuaries , Oceans and Seas
2.
Sci Adv ; 7(16)2021 04.
Article in English | MEDLINE | ID: mdl-33853769

ABSTRACT

Microbial degradation of dissolved organic carbon (DOC) in aquatic environments can cause oxygen depletion, water acidification, and CO2 emissions. These problems are caused by labile DOC (LDOC) and not refractory DOC (RDOC) that resists degradation and is thus a carbon sink. For nearly a century, chemical oxygen demand (COD) has been widely used for assessment of organic pollution in aquatic systems. Here, we show through a multicountry survey and experimental studies that COD is not an appropriate proxy of microbial degradability of organic matter because it oxidizes both LDOC and RDOC, and the latter contributes up to 90% of DOC in high-latitude forested areas. Hence, COD measurements do not provide appropriate scientific information on organic pollution in natural waters and can mislead environmental policies. We propose the replacement of the COD method with an optode-based biological oxygen demand method to accurately and efficiently assess organic pollution in natural aquatic environments.

3.
J Appl Phycol ; 30(2): 1073-1094, 2018.
Article in English | MEDLINE | ID: mdl-29755205

ABSTRACT

Ballast water management systems (BWMS) must be tested to assess their compliance with standards for the discharge of organisms, for example in the ≥ 10- and < 50-µm size category, which is dominated by phytoplankton. Assessment of BWMS performance with the vital stains fluorescein diacetate + 5-chlorofluorescein diacetate, required by regulations in the USA, is problematic in the case of ultraviolet-C (UVC) radiation. This is because UVC targets nucleotides-and thus reproduction, hence viability-rather than membrane integrity, which is assayed by the stains. The Serial Dilution Culture-Most Probable Number (SDC-MPN) method, long used to enumerate fragile phytoplankton from natural communities, is appropriate for counting viable phytoplankton. We developed QA/QC "best practice" criteria for its application as a robust and repeatable assay of viable cells in cultures of phytoplankton before and after experimental treatment, then constructed dose-response curves for UVC-induced loss of viable cells in 12 species of phytoplankton from seven divisions. Sensitivity to UVC, expressed as the dose required to reduce viability by 99%-the criterion for type approval of treatment systems-varied more than 10-fold and was not correlated with cell size. The form of the dose-response curves varied between taxa, with most having a threshold dose below which there was no reduction in viability. Analysis of the patterns of growth indicates that if recovery from treatment occurred, it was complete in 1 or 2 days in > 80% of cases, long before the assays were terminated. We conclude that the SDC-MPN assay as described is robust and adaptable for use on natural phytoplankton.

4.
J Geophys Res Oceans ; 122(1): 555-569, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30245955

ABSTRACT

Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due a lack of POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using a dataset of field observations and satellite ocean color products, we developed a new multiple regression algorithm to derive POC from satellite observations in two river-dominated estuaries in the northern Gulf of Mexico: the Louisiana Continental Shelf (LCS) and Mobile Bay. The algorithm had reliable performance with mean relative error (MRE) of ~40%, and root mean square error (RMSE) of ~50% for MODIS and SeaWiFS images in the two systems. Substantial spatio-temporal variability was observed from satellite on the LCS, with higher POC on the inner shelf (< 10 m depth) and lower POC on the middle (10-50 m depth) and outer shelves (50-200 m depth), and with higher POC in winter (January to March), and lower POC in summer to fall (August to October). Correlation analysis between long-term POC time series and several potential influencing factors indicated that river discharge dominants POC dynamics on the LCS. Wind and surface currents also affect POC spatial patterns on short time scales. This study demonstrates that algorithms that can determine coastal POC from satellites greatly increase the spatial and temporal extent of observations available for characterizing POC dynamics and their relations to various dominant physical forcings to the continental shelf and estuaries.

5.
J Phycol ; 52(4): 572-89, 2016 08.
Article in English | MEDLINE | ID: mdl-27028462

ABSTRACT

Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone.


Subject(s)
Environmental Monitoring , Fluoresceins/metabolism , Phytoplankton/cytology , Staining and Labeling , Waste Disposal, Fluid , Death , Fluorescent Dyes/metabolism , Ships
6.
J Appl Phycol ; 28(1): 279-298, 2016.
Article in English | MEDLINE | ID: mdl-26893536

ABSTRACT

Discharge standards for ballast water treatment (BWT) systems are based on concentrations of living cells, for example, as determined with vital stains. Ultraviolet radiation (UV) stops the reproduction of microorganisms without killing them outright; they are living, but not viable, and ecologically as good as dead. Consequently, UV-treated discharge can be compliant with the intent of regulation while failing a live/dead test. An alternative evaluation of BWT can be proposed based on the assessment of viable, rather than living, cells in discharge water. In principle, the serial dilution culture-most probable number (SDC-MPN) method provides the appropriate measure for phytoplankton. But, the method has been criticized, particularly because it is thought that many phytoplankton species cannot be cultured. A review of the literature shows that although SDC-MPN has been used for more than 50 years-generally to identify and count phytoplankton species that cannot be preserved-its application to enumerate total viable phytoplankton seems to be new, putting past criticisms of the method in a different light. Importantly, viable cells need to grow only enough to be detected, not to be brought into sustained culture, and competition between species in a dilution tube is irrelevant as long as the winner is detectable. Thorough consideration of sources of error leads to recommendations for minimizing and quantifying uncertainties by optimizing growth conditions and conducting systematic comparisons. We conclude that with careful evaluation, SDC-MPN is potentially an effective method for assessing the viability of phytoplankton after BWT.

7.
J Phycol ; 50(2): 341-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-26988191

ABSTRACT

An equation for the rate of photosynthesis as a function of irradiance introduced by T. T. Bannister included an empirical parameter b to account for observed variations in curvature between the initial slope and the maximum rate of photosynthesis. Yet researchers have generally favored equations with fixed curvature, possibly because b was viewed as having no physiological meaning. We developed an analytic photosynthesis-irradiance equation relating variations in curvature to changes in the degree of connectivity between photosystems, and also considered a recently published alternative, based on changes in the size of the plastoquinone pool. When fitted to a set of 185 observed photosynthesis-irradiance curves, it was found that the Bannister equation provided the best fit more frequently compared to either of the analytic equations. While Bannister's curvature parameter engendered negligible improvement in the statistical fit to the study data, we argued that the parameter is nevertheless quite useful because it allows for consistent estimates of initial slope and saturation irradiance for observations exhibiting a range of curvatures, which would otherwise have to be fitted to different fixed-curvature equations. Using theoretical models, we also found that intra- and intercellular self-shading can result in biased estimates of both curvature and the saturation irradiance parameter. We concluded that Bannister's is the best currently available equation accounting for variations in curvature precisely because it does not assign inappropriate physiological meaning to its curvature parameter, and we proposed that b should be thought of as the expression of the integration of all factors impacting curvature.

8.
J Phycol ; 49(2): 349-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-27008521

ABSTRACT

Periodic and seasonal exposure to high light is a common occurrence for many near-shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid-Atlantic of the United States were followed in continuous cultures at low- and high-light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv /Fm ) as well as the photosynthetic cross-section (σPSII ) of photosystem II was higher in high-light cultures compared to low-light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high-light-acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short-term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short-term increases in de-epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long-term high-light-acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.

9.
Water Res ; 44(8): 2461-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20163813

ABSTRACT

The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying phytoplankton biomass and community composition was tested using natural communities from two southeastern United States estuaries, North Inlet, South Carolina, and the Neuse River Estuary, North Carolina. Estimates of biomass (as chlorophyll a) were correlated with HPLC values and variations (usually over-estimates) were consistent with effects of light intensity and nutrient availability on fluorescence quenching. AOA estimates of taxonomic structure were consistent with those from HPLC-derived marker pigments by ChemTax, with both methods indicating domination by chromophytes and green algae in North Inlet and chromophytes and cyanobacteria in the Neuse. We recommend frequent calibration by discrete sample collection, and calibration with species representative of the region of interest. Overall, the AOA appears to be a useful tool for monitoring of phytoplankton community composition, especially as an early warning system for the detection of harmful algal blooms.


Subject(s)
Environmental Monitoring/methods , Fluorometry , Phytoplankton , Biomass , Calibration , Chlorophyll/analysis , Chlorophyll A , Chromatography, High Pressure Liquid , North Carolina , Population Dynamics , South Carolina
SELECTION OF CITATIONS
SEARCH DETAIL
...