Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler Relat Disord ; 88: 105741, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38936325

ABSTRACT

INTRODUCTION: Mobility impairment is common in multiple sclerosis (MS); however, agility has received less attention. Agility requires strength and neuromuscular coordination to elicit controlled propulsive rapid whole-body movement. Grip strength is a common method to assess whole body force production, but also reflects neuromuscular integrity and global brain health. Impaired agility may be linked to loss of neuromuscular integrity (reflected by grip strength or corticospinal excitability). OBJECTIVES: We aimed to determine whether grip strength would be associated with agility and transcranial magnetic stimulation (TMS)-based indices of corticospinal excitability and inhibition in persons with MS having low disability. We hypothesized that low grip strength would predict impaired agility and reflect low corticospinal excitability. METHODS: We recruited 34 persons with relapsing MS (27 females; median [range] age 45.5 [21.0-65.0] years) and mild disability (median [range] Expanded Disability Status Scale 2.0 [0-3.0]), as well as a convenience sample of age- and sex-matched apparently healthy controls. Agility was tested by measuring hop length during bipedal hopping on an instrumented walkway. Grip strength was measured using a calibrated dynamometer. Corticospinal excitability and inhibition were examined using TMS-based motor evoked potential (MEP) and corticospinal silent period (CSP) recruitment curves, respectively. RESULTS: MS participants had significantly lower grip strength than controls independent of sex. Females with and without MS had weaker grip strength than males. There were no statistically significant sex or group differences in agility. After controlling for sex, weaker grip strength was associated with shorter hop length in controls only (r = 0.645, p < .05). Grip strength did not significantly predict agility in persons with MS, nor was grip strength predicted by corticospinal excitability or inhibition. CONCLUSIONS: In persons with MS having low disability, grip strength (normalized to body mass) was reduced despite having intact agility and walking performance. Grip strength was not associated with corticospinal excitability or inhibition, suggesting peripheral neuromuscular function, low physical activity or fitness, or other psychosocial factors may be related to weakness. Low grip strength is a putative indicator of early neuromuscular aging in persons with MS having mild disability and normal mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...