Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(23): e202405197, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574245

ABSTRACT

Mammalian cytochrome P450 drug-metabolizing enzymes rarely cleave carbon-carbon (C-C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non-polar, unstrained C(sp2)-C(sp3) bonds in the FDA-approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer-Villiger oxidation mechanism that is commonly invoked to address P450-mediated C-C bond cleavages. Our studies in 18O2 and H2 18O enriched systems reveal two unusual distinct mechanisms of C-C bond cleavage: one bond is cleaved by CYP3A-mediated ipso-addition of oxygen to a C(sp2) site of N-protected pyridin-2-amines, and the other occurs by a pseudo-retro-aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A-mediated C-C bond cleavage in drug metabolism via ipso-addition of oxygen mediated mechanism. CYP3A-mediated ipso-addition is also implicated in the regioselective C-C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A-catalyzed oxygen ipso-addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450-engineering methods to address the challenging task of C-C bond cleavages.


Subject(s)
Cytochrome P-450 CYP3A , Oxygen , Oxygen/chemistry , Oxygen/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/chemistry , Humans , Molecular Structure , Carbon/chemistry , Carbon/metabolism , Oxidation-Reduction
2.
Drug Metab Dispos ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658163

ABSTRACT

Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We utilized high-resolution IMS with matrix-assisted laser desorption/ionization (MALDI-IMS) to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is DLX or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course Significance Statement The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.

3.
Org Lett ; 26(17): 3493-3497, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38506470

ABSTRACT

The morpholine heterocycle is a structural unit found in many bioactive compounds and FDA-approved drugs, but the generation of more complex C-functionalized morpholine derivatives remains considerably underexplored. Using systematic chemical diversity (SCD), a concept that guides the expansion of saturated drug-like scaffolds through regiochemical and stereochemical variation, we describe the synthesis of a collection of methyl-substituted morpholine acetic acid esters starting from enantiomerically pure amino acids and amino alcohols. In total, 24 diverse substituted morpholines were produced that vary systematically in regiochemistry and stereochemistry (relative and absolute). These diverse C-substituted morpholines can be directly applied in fragment screening or incorporated as building blocks in medicinal chemistry and library synthesis.


Subject(s)
Morpholines , Morpholines/chemistry , Molecular Structure , Stereoisomerism , Esters/chemistry , Amino Acids/chemistry , Amino Acids/chemical synthesis , Chemistry, Pharmaceutical
4.
J Med Chem ; 67(7): 5333-5350, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38551814

ABSTRACT

Steroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound SI-2, guided by in vitro/in vivo metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, SI-10 and SI-12. Both compounds exhibit potent cytotoxicity against a panel of human cancer cell lines and demonstrate acceptable pharmacokinetic properties. A biotinylated estrogen response element pull-down assay demonstrated that SI-12 could disrupt the recruitment of SRC-3 and p300 in the estrogen receptor complex. Importantly, SI-10 and SI-12 significantly inhibited tumor growth and metastasis in vivo without appreciable acute toxicity. These results demonstrate the potential of SI-10 and SI-12 as drug candidates for cancer therapy, given their potent SRC-3 inhibition and promising pharmacokinetic and toxicity profiles.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nuclear Receptor Coactivator 3/metabolism , Cell Line , Structure-Activity Relationship , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Antineoplastic Agents/pharmacology
5.
Drug Metab Rev ; 56(2): 97-126, 2024.
Article in English | MEDLINE | ID: mdl-38311829

ABSTRACT

Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.


Subject(s)
Antidepressive Agents , Chemical and Drug Induced Liver Injury , Humans , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/adverse effects , Antidepressive Agents/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Animals , Activation, Metabolic
6.
ACS Med Chem Lett ; 15(1): 107-115, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229743

ABSTRACT

The bromodomain inhibitor (+)-JQ1 is a highly validated chemical probe; however, it exhibits poor in vivo pharmacokinetics. To guide efforts toward improving its pharmacological properties, we identified the (+)-JQ1 primary metabolite using chemical catalysis methods. Treatment of (+)-JQ1 with tetrabutylammonium decatungstate under photochemical conditions resulted in selective formation of an aldehyde at the 2-position of the thiophene ring [(+)-JQ1-CHO], which was further reduced to the 2-hydroxymethyl analog [(+)-JQ1-OH]. Comparative LC/MS analysis of (+)-JQ1-OH to the product obtained from liver microsomes suggested (+)-JQ1-OH as the major metabolite of (+)-JQ1. The 2-thienyl position was then substituted to generate a trideuterated (-CD3, (+)-JQ1-D) analog having half-lives that were 1.8- and 2.8-fold longer in mouse and human liver microsomes, respectively. This result unambiguously confirmed (+)-JQ1-OH as the major metabolite of (+)-JQ1. These studies demonstrate an efficient process for studying drug metabolism and identifying the metabolic soft spots of bioactive compounds.

7.
Chem Res Toxicol ; 36(8): 1427-1438, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37531179

ABSTRACT

Pexidartinib (PEX, TURALIO), a selective and potent inhibitor of the macrophage colony-stimulating factor-1 receptor, has been approved for the treatment of tenosynovial giant cell tumor. However, frequent and severe adverse effects have been reported in the clinic, resulting in a boxed warning on PEX for its risk of liver injury. The mechanisms underlying PEX-related hepatotoxicity, particularly metabolism-related toxicity, remain unknown. In the current study, the metabolic activation of PEX was investigated in human/mouse liver microsomes (HLM/MLM) and primary human hepatocytes (PHH) using glutathione (GSH) and methoxyamine (NH2OMe) as trapping reagents. A total of 11 PEX-GSH and 7 PEX-NH2OMe adducts were identified in HLM/MLM using an LC-MS-based metabolomics approach. Additionally, 4 PEX-GSH adducts were detected in the PHH. CYP3A4 and CYP3A5 were identified as the primary enzymes responsible for the formation of these adducts using recombinant human P450s and CYP3A chemical inhibitor ketoconazole. Overall, our studies suggested that PEX metabolism can produce reactive metabolites mediated by CYP3A, and the association of the reactive metabolites with PEX hepatotoxicity needs to be further studied.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP3A , Mice , Humans , Animals , Cytochrome P-450 CYP3A/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Microsomes, Liver/metabolism , Metabolomics , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism
8.
Chemistry ; 29(55): e202301888, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37462979

ABSTRACT

We report a heterocyclic merging approach to construct novel indazolo-piperazines and indazolo-morpholines. Starting from chiral diamines and amino alcohols, novel regiochemically (1,3 and 1,4) and stereochemically diverse (relative and absolute) cohorts of indazolo-piperazines and indazolo-morpholines were obtained within six or seven steps. The key transformations involved are a Smiles rearrangement to generate the indazole core structure and a late-stage Michael addition to build the piperazine and morpholine heterocycles. We further explored additional vector diversity by incorporating substitutions on the indazole aromatic ring, generating a total of 20 unique, enantiomerically pure heterocyclic scaffolds.

9.
Eur J Pharm Sci ; 181: 106358, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36513193

ABSTRACT

Duloxetine (DLX) is widely used to treat major depressive disorder. Little is known about the mechanistic basis for DLX-related adverse effects (e.g., liver injury). Human CYP1A2 and CYP2D6 mainly contributes to DLX metabolism, which was proposed to be involved in its adverse effects. Here, we investigated the roles of Cyp1a2 and Cyp2d on DLX pharmacokinetic profile and tissue distribution using a Cyp1a2 knockout (Cyp1a2-KO) mouse model together with a Cyp2d inhibitor (propranolol). Cyp1a2-KO has the few effects on the systematic exposure (area under the plasma concentration-time curve, AUC) and tissue disposition of DLX and its primary metabolites. Propranolol dramatically increased the AUCs of DLX by 3 folds and 1.5 folds in WT and Cyp1a2-KO mice, respectively. Meanwhile, Cyp2d inhibitor decreased the AUC of Cyp2d-involved DLX metabolites (e.g., M16). Mouse tissue distribution revealed that DLX and its major metabolites were the most abundant in kidney, followed by liver and lung with/without Cyp2d inhibitor. Cyp2d inhibitor significantly increased DLX levels in tissues (e.g., liver) in WT and KO mice and decreases the levels of M3, M15, M16 and M17, while it increased the levels of M4, M28 and M29 in tissues. Our findings indicated that Cyp2d play a fundamental role on DLX pharmacokinetic profile and tissue distribution in mice. Clinical studies suggested that CYP1A2 has more effects on DLX systemic exposure than CYP2D6. Further studies in liver humanized mice or clinical studies concerning CYP2D6 inhibitors-DLX interaction study could clarify the roles of CYP2D6 on DLX pharmacokinetics and toxicity in human.


Subject(s)
Depressive Disorder, Major , Serotonin and Noradrenaline Reuptake Inhibitors , Humans , Mice , Animals , Duloxetine Hydrochloride , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Propranolol , Serotonin , Central Nervous System Agents , Mice, Knockout
10.
Andrology ; 11(5): 808-815, 2023 07.
Article in English | MEDLINE | ID: mdl-36209044

ABSTRACT

BACKGROUND: A safe, effective, and reversible nonhormonal male contraceptive drug is greatly needed for male contraception as well as for circumventing the side effects of female hormonal contraceptives. Phosducin-like 2 (PDCL2) is a testis-specific phosphoprotein in mice and humans. We recently found that male PDCL2 knockout mice are sterile due to globozoospermia caused by impaired sperm head formation, indicating that PDCL2 is a potential target for male contraception. Herein, our study for the first time developed a biophysical assay for PDCL2 allowing us to screen a series of small molecules, to study structure-activity relationships, and to discover two PDCL2 binders with novel chemical structure. OBJECTIVE: To identify a PDCL2 ligand for therapeutic male contraception, we performed DNA-encoded chemical library (DECL) screening and off-DNA hit validation using a unique affinity selection mass spectrometry (ASMS) biophysical profiling strategy. MATERIALS AND METHODS: We employed the screening process of DECL, which contains billions of chemically unique DNA-barcoded compounds generated through individual sequences of reactions and different combinations of functionalized building blocks. The structures of the PDCL2 binders are proposed based on the sequencing analysis of the DNA barcode attached to each individual DECL compound. The proposed structure is synthesized through multistep reactions. To confirm and determine binding affinity between the DECL identified molecules and PDCL2, we developed an ASMS assay that incorporates liquid chromatography with tandem mass spectrometry (LC-MS/MS). RESULTS: After a screening process of PDCL2 with DECLs containing >440 billion compounds, we identified a series of hits. The selected compounds were synthesized as off-DNA small molecules, characterized by spectroscopy data, and subjected to our ASMS/LC-MS/MS binding assay. By this assay, we discovered two novel compounds, which showed good binding affinity for PDCL2 in comparison to other molecules generated in our laboratory and which were further confirmed by a thermal shift assay. DISCUSSION AND CONCLUSION AND RELEVANCE: With the ASMS/LC-MS/MS assay developed in this paper, we successfully discovered a PDCL2 ligand that warrants further development as a male contraceptive.


Subject(s)
DNA , Small Molecule Libraries , Humans , Male , Female , Animals , Mice , DNA/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Drug Discovery , Ligands , Chromatography, Liquid , Tandem Mass Spectrometry , Semen/metabolism
11.
Elife ; 112022 08 05.
Article in English | MEDLINE | ID: mdl-35929723

ABSTRACT

Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory (AI) pseudo-substrate sequences to PKG Iα and Iß that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here, we present a crystal structure of PKG Iß in which the AI sequence and the cyclic nucleotide-binding (CNB) domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iß AI sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I CNB domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wildtype cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iß auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I , Nitric Oxide , Animals , Cyclic GMP , Mammals , Phosphorylation , Protein Isoforms
12.
Molecules ; 27(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684357

ABSTRACT

We report a short synthetic route for synthesizing 2,3-substituted piperazine acetic acid esters. Optically pure amino acids were efficiently converted into 1,2-diamines that could be utilized to deliver the title 2,3-substituted piperazines in five steps with a high enantiomeric purity. The novel route facilitated, for the first time, the synthesis of 3-phenyl substituted-2-piperazine acetic acid esters that were difficult to achieve using other methods; however, in this case, the products underwent racemization.


Subject(s)
Diamines , Piperazines , Acetic Acid , Esters/chemistry , Piperazine , Piperazines/chemistry , Stereoisomerism
13.
Proc Natl Acad Sci U S A ; 119(13): e2023784119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333654

ABSTRACT

Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis.


Subject(s)
Hippocampus , Neurogenesis , Oleic Acid , Receptors, Cytoplasmic and Nuclear , Animals , Cell Proliferation , Hippocampus/growth & development , Hippocampus/metabolism , Ligands , Mice , Neurogenesis/physiology , Oleic Acid/metabolism , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/metabolism
14.
Drug Metab Dispos ; 50(2): 128-139, 2022 02.
Article in English | MEDLINE | ID: mdl-34785568

ABSTRACT

Duloxetine (DLX) is a dual serotonin and norepinephrine reuptake inhibitor, widely used for the treatment of major depressive disorder. Although DLX has shown good efficacy and safety, serious adverse effects (e.g., liver injury) have been reported. The mechanisms associated with DLX-induced toxicity remain elusive. Drug metabolism plays critical roles in drug safety and efficacy. However, the metabolic profile of DLX in mice is not available, although mice serve as commonly used animal models for mechanistic studies of drug-induced adverse effects. Our study revealed 39 DLX metabolites in human/mouse liver microsomes and mice. Of note, 13 metabolites are novel, including five N-acetyl cysteine adducts and one reduced glutathione (GSH) adduct associated with DLX. Additionally, the species differences of certain metabolites were observed between human and mouse liver microsomes. CYP1A2 and CYP2D6 are primary enzymes responsible for the formation of DLX metabolites in liver microsomes, including DLX-GSH adducts. In summary, a total of 39 DLX metabolites were identified, and species differences were noticed in vitro. The roles of CYP450s in DLX metabolite formation were also verified using human recombinant cytochrome P450 (P450) enzymes and corresponding chemical inhibitors. Further studies are warranted to address the exact role of DLX metabolism in its adverse effects in vitro (e.g., human primary hepatocytes) and in vivo (e.g., Cyp1a2-null mice). SIGNIFICANCE STATEMENT: This current study systematically investigated Duloxetine (DLX) metabolism and bioactivation in liver microsomes and mice. This study provided a global view of DLX metabolism and bioactivation in liver microsomes and mice, which are very valuable to further elucidate the mechanistic study of DLX-related adverse effects and drug-drug interaction from metabolic aspects.


Subject(s)
Depressive Disorder, Major , Serotonin and Noradrenaline Reuptake Inhibitors , Animals , Depressive Disorder, Major/metabolism , Duloxetine Hydrochloride/metabolism , Mice , Microsomes, Liver/metabolism , Serotonin/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/metabolism
15.
Nat Commun ; 12(1): 5579, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552088

ABSTRACT

Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid-liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state.


Subject(s)
Cellular Reprogramming , Chromatin/metabolism , DNA/metabolism , Kruppel-Like Transcription Factors/metabolism , Base Sequence , Cell Line , Cell Nucleus/metabolism , DNA/chemistry , DNA/genetics , DNA Methylation , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/genetics , Models, Molecular , Mutation , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , SOXB1 Transcription Factors/genetics , Zinc Fingers/genetics
16.
Sci Rep ; 11(1): 1121, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441849

ABSTRACT

Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.


Subject(s)
CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Drug Discovery , Pyridines/chemistry , Pyridines/metabolism , Small Molecule Libraries , Tudor Domain , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Binding Sites , Crystallography, X-Ray , Histone Code , Histones/metabolism , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Peptide Fragments/metabolism , Protein Binding , Pyridines/pharmacokinetics , Structure-Activity Relationship
17.
Eur J Pharm Sci ; 153: 105488, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32712217

ABSTRACT

Atomoxetine (ATX), a selective and potent inhibitor of the presynaptic norepinephrine transporter, is used mainly to treat attention-deficit hyperactivity disorder. Although multiple adverse effects associated with ATX have been reported including severe liver injuries, the mechanisms of ATX-related toxicity remain largely unknown. Metabolism frequently contributes to adverse effects of a drug through reactive metabolites, and the bioactivation status of ATX is still not investigated yet. Here, we systematically investigated ATX metabolism, bioactivation, species difference in human, mouse, and rat liver microsomes (HLM, MLM, and RLM) and in mice using metabolomic approaches as mice and rats are commonly used animal models for the studies of drug toxicity. We identified thirty one ATX metabolites and adducts in LMs and mice, 16 of which are novel. In LMs, we uncovered two methoxyamine-trapped aldehydes, two cyclization metabolites, detoluene-ATX, and ATX-N-hydroxylation for the first time. Detoluene-ATX and one cyclization metabolite were also observed in mice. Using chemical inhibitors and recombinant CYP enzymes, we demonstrated that CYP2C8 and CYP2B6 mainly contribute to the formation of aldehyde; CYP2D6 is the dominant enzyme for the formation of ATX cyclization and detoluene-ATX; CYP3A4 is major enzyme responsible for the hydroxylamine formation. The findings concerning aldehydes should be very useful to further elucidate the mechanistic aspects of adverse effects associated with ATX from metabolic angles. Additionally, the species differences for each metabolite should be helpful to investigate the contribution of specific metabolites to ATX toxicity and possible drug-drug interactions in suitable models.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Microsomes, Liver , Animals , Atomoxetine Hydrochloride , Metabolomics , Mice , Norepinephrine , Rats
18.
Biol Reprod ; 103(2): 427-436, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32285106

ABSTRACT

JQ1 is a small-molecule inhibitor of the bromodomain and extra terminal (BET) protein family that potently inhibits the bromodomain testis-specific protein (BRDT), which is essential for spermatogenesis. JQ1 treatment produces a reversible contraceptive effect by targeting the activity of BRDT in mouse male germ cells, validating BRDT as a male contraceptive target. Although JQ1 possesses favourable physical properties, it exhibits a short half-life. Because the details of xenobiotic metabolism play important roles in the optimization of drug candidates and in determining the role of metabolism in drug efficacy, we investigated the metabolism of JQ1 in human and mouse liver microsomes. We present the first comprehensive view of JQ1 metabolism in liver microsomes, distinguishing nine JQ1 metabolites, including three monohydroxylated, one de-tert-butylated, two dihydroxylated, one monohydroxylated/dehydrogenated, one monohydroxylated-de-tert-butylated and one dihydroxylated/dehydrogenated variant of JQ1. The dominant metabolite (M1) in both human and mouse liver microsomes is monohydroxylated on the fused three-ring core. Using recombinant cytochrome P450 (CYP) enzymes, chemical inhibitors and the liver S9 fraction of Cyp3a-null mice, we identify enzymes that contribute to the formation of these metabolites. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is the main contributor to the production of JQ1 metabolites in vitro, and the CYP3A4/5 inhibitor ketoconazole strongly inhibits JQ1 metabolism in both human and mouse liver microsomes. Our findings suggest that JQ1 half-life and efficacy might be improved in vivo by co-administration of a selective CYP inhibitor, thereby impacting the use of JQ1 as a probe for BRDT activity in spermatogenesis and as a probe or therapeutic in other systems.


Subject(s)
Azepines/pharmacology , Microsomes, Liver/drug effects , Nuclear Proteins/metabolism , Triazoles/pharmacology , Animals , Humans , Metabolomics , Mice , Microsomes, Liver/metabolism
19.
Sci Adv ; 6(5): eaax8254, 2020 01.
Article in English | MEDLINE | ID: mdl-32064339

ABSTRACT

Plant-microbe interactions are mediated by signaling compounds that control vital plant functions, such as nodulation, defense, and allelopathy. While interruption of signaling is typically attributed to biological processes, potential abiotic controls remain less studied. Here, we show that higher organic carbon (OC) contents in soils repress flavonoid signals by up to 70%. Furthermore, the magnitude of repression is differentially dependent on the chemical structure of the signaling molecule, the availability of metal ions, and the source of the plant-derived OC. Up to 63% of the signaling repression occurs between dissolved OC and flavonoids rather than through flavonoid sorption to particulate OC. In plant experiments, OC interrupts the signaling between a legume and a nitrogen-fixing microbial symbiont, resulting in a 75% decrease in nodule formation. Our results suggest that soil OC decreases the lifetime of flavonoids underlying plant-microbe interactions.


Subject(s)
Carbon/metabolism , Flavonoids/metabolism , Medicago sativa/metabolism , Soil Microbiology , Metals/metabolism , Minerals/metabolism , Nitrogen/metabolism , Plant Physiological Phenomena , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...