Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 894209, 2022.
Article in English | MEDLINE | ID: mdl-36017500

ABSTRACT

Drug-Induced Liver Injury (DILI), despite its low occurrence rate, can cause severe side effects or even lead to death. Thus, it is one of the leading causes for terminating the development of new, and restricting the use of already-circulating, drugs. Moreover, its multifactorial nature, combined with a clinical presentation that often mimics other liver diseases, complicate the identification of DILI-related (or "positive") literature, which remains the main medium for sourcing results from the clinical practice and experimental studies. This work-contributing to the "Literature AI for DILI Challenge" of the Critical Assessment of Massive Data Analysis (CAMDA) 2021- presents an automated pipeline for distinguishing between DILI-positive and negative publications. We used Natural Language Processing (NLP) to filter out the uninformative parts of a text, and identify and extract mentions of chemicals and diseases. We combined that information with small-molecule and disease embeddings, which are capable of capturing chemical and disease similarities, to improve classification performance. The former were directly sourced from the Chemical Checker (CC). For the latter, we collected data that encode different aspects of disease similarity from the National Library of Medicine's (NLM) Medical Subject Headings (MeSH) thesaurus and the Comparative Toxicogenomics Database (CTD). Following a similar procedure as the one used in the CC, vector representations for diseases were learnt and evaluated. Two Neural Network (NN) classifiers were developed: a baseline model that accepts texts as input and an augmented, extended, model that also utilises chemical and disease embeddings. We trained, validated, and tested the classifiers through a Nested Cross-Validation (NCV) scheme with 10 outer and 5 inner folds. During this, the baseline and extended models performed virtually identically, with F1-scores of 95.04 ± 0.61% and 94.80 ± 0.41%, respectively. Upon validation on an external, withheld, dataset that is meant to assess classifier generalisability, the extended model achieved an F1-score of 91.14 ± 1.62%, outperforming its baseline counterpart which received a lower score of 88.30 ± 2.44%. We make further comparisons between the classifiers and discuss future improvements and directions, including utilising chemical and disease embeddings for visualisation and exploratory analysis of the DILI-positive literature.

2.
Front Genet ; 13: 867946, 2022.
Article in English | MEDLINE | ID: mdl-35846129

ABSTRACT

Drug-induced liver injury (DILI) is a class of adverse drug reactions (ADR) that causes problems in both clinical and research settings. It is the most frequent cause of acute liver failure in the majority of Western countries and is a major cause of attrition of novel drug candidates. Manual trawling of the literature is the main route of deriving information on DILI from research studies. This makes it an inefficient process prone to human error. Therefore, an automatized AI model capable of retrieving DILI-related articles from the huge ocean of literature could be invaluable for the drug discovery community. In this study, we built an artificial intelligence (AI) model combining the power of natural language processing (NLP) and machine learning (ML) to address this problem. This model uses NLP to filter out meaningless text (e.g., stop words) and uses customized functions to extract relevant keywords such as singleton, pair, and triplet. These keywords are processed by an apriori pattern mining algorithm to extract relevant patterns which are used to estimate initial weightings for a ML classifier. Along with pattern importance and frequency, an FDA-approved drug list mentioning DILI adds extra confidence in classification. The combined power of these methods builds a DILI classifier (DILI C ), with 94.91% cross-validation and 94.14% external validation accuracy. To make DILI C as accessible as possible, including to researchers without coding experience, an R Shiny app capable of classifying single or multiple entries for DILI is developed to enhance ease of user experience and made available at https://researchmind.co.uk/diliclassifier/. Additionally, a GitHub link (https://github.com/sanjaysinghrathi/DILI-Classifier) for app source code and ISMB extended video talk (https://www.youtube.com/watch?v=j305yIVi_f8) are available as supplementary materials.

3.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193418

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the rapid development of new therapies against coronavirus disease 2019 (COVID-19) infection. Here, we present the identification of 200 approved drugs, appropriate for repurposing against COVID-19. We constructed a SARS-CoV-2-induced protein network, based on disease signatures defined by COVID-19 multiomics datasets, and cross-examined these pathways against approved drugs. This analysis identified 200 drugs predicted to target SARS-CoV-2-induced pathways, 40 of which are already in COVID-19 clinical trials, testifying to the validity of the approach. Using artificial neural network analysis, we classified these 200 drugs into nine distinct pathways, within two overarching mechanisms of action (MoAs): viral replication (126) and immune response (74). Two drugs (proguanil and sulfasalazine) implicated in viral replication were shown to inhibit replication in cell assays. This unbiased and validated analysis opens new avenues for the rapid repurposing of approved drugs into clinical trials.


Subject(s)
Drug Repositioning , SARS-CoV-2/physiology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Humans , Neural Networks, Computer , Proguanil/pharmacology , Proguanil/therapeutic use , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sulfasalazine/pharmacology , Virus Replication/drug effects , COVID-19 Drug Treatment
4.
Adv Drug Deliv Rev ; 172: 249-274, 2021 05.
Article in English | MEDLINE | ID: mdl-33561453

ABSTRACT

SARS-CoV-2, which causes COVID-19, was first identified in humans in late 2019 and is a coronavirus which is zoonotic in origin. As it spread around the world there has been an unprecedented effort in developing effective vaccines. Computational methods can be used to speed up the long and costly process of vaccine development. Antigen selection, epitope prediction, and toxicity and allergenicity prediction are areas in which computational tools have already been applied as part of reverse vaccinology for SARS-CoV-2 vaccine development. However, there is potential for computational methods to assist further. We review approaches which have been used and highlight additional bioinformatic approaches and PK modelling as in silico methods which may be useful for SARS-CoV-2 vaccine design but remain currently unexplored. As more novel viruses with pandemic potential are expected to arise in future, these techniques are not limited to application to SARS-CoV-2 but also useful to rapidly respond to novel emerging viruses.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Computational Biology/methods , Drug Development/methods , SARS-CoV-2/drug effects , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Computational Biology/trends , Drug Development/trends , Epitopes/genetics , Epitopes/immunology , Gene Expression Profiling/methods , Gene Expression Profiling/trends , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
BMC Genomics ; 20(1): 446, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159762

ABSTRACT

BACKGROUND: Circulating microRNAs (miRNAs) are attractive non-invasive biomarkers for a variety of conditions due to their stability and altered pathophysiological expression levels. Reliable detection of global expression profiles is required to maximise miRNA biomarker discovery. Although developments in small RNA-Seq technology have improved detection of plasma-based miRNAs, the low RNA content and sequencing bias introduced during library preparation remain challenging. In this study we compare commercially available RNA extraction methods using MagnaZol (Bioo Scientific) or miRNeasy (QIAGEN) and three library preparation methods - CleanTag (TriLink), NEXTflex (Bioo Scientific) and QIAseq (QIAGEN) - which aim to address one or both of these issues. RESULTS: Different RNA extractions and library preparation protocols result in differential detection of miRNAs. A greater proportion of reads mapped to miRNAs in libraries prepared with MagnaZol RNA than with miRNeasy RNA. Libraries prepared using QIAseq demonstrated the greatest miRNA diversity with many more very low abundance miRNAs detected (~ 2-3 fold more with < 10 reads), whilst CleanTag detected the fewest individual miRNAs and considerably over-represented miR-486-5p. Libraries prepared with QIAseq had the strongest correlation with RT-qPCR quantification. Analysis of unique molecular indices (UMIs) incorporated in the QIAseq protocol indicate that little PCR bias is introduced during small RNA library preparation. CONCLUSIONS: Small RNAs were consistently detected using all RNA extraction and library preparation protocols tested, but with some miRNAs at significantly different levels. Choice of the most suitable protocol should be informed by the relative importance of minimising the total sequencing required, detection of rare miRNAs or absolute quantification.


Subject(s)
Biomarkers/blood , Gene Library , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , MicroRNAs/blood , MicroRNAs/isolation & purification , Sequence Analysis, RNA/methods , Humans , MicroRNAs/genetics
6.
Front Med (Lausanne) ; 6: 33, 2019.
Article in English | MEDLINE | ID: mdl-30915334

ABSTRACT

Endothelial Colony Forming Cells (ECFCs) represent a subset of endothelial progenitors with well-documented vasoreparative capacity. However, cellular senescence, which occurs due to aging, diabetes, smoking, or tissue inflammation, renders these cells dysfunctional. Therefore, there is growing interest in studying expression of senescence markers in ECFCs. RT-qPCR is the most commonly used technique to quantify gene expression and the proper choice of reference genes used for data normalization is critical for accurate quantification. It has been reported that the expression of commonly used housekeeping genes is often unstable in senescence. To identify the most suitable reference genes for ECFC senescence studies, we analyzed a microarray dataset, which compared the gene expression between proliferating and senescent ECFCs. In addition to replicative senescence, the data included X-ray-induced and Etoposide-induced senescence. We used the geNorm algorithm to identify the most stable genes across all studied conditions. Gene Ontology analysis found that the most stable genes belonged to the KEGG category of Genetic Information Processing. The optimal combination of housekeeping genes for ECFC senescence was found to include four ribosomal protein genes; RPL13, RPL31, RPL37, and RPL30. The RT-qPCR validation confirmed that normalization with our novel panel was more sensitive in identifying senescence markers compared to commonly used genes such as ACTB, UBC, and GAPDH.

SELECTION OF CITATIONS
SEARCH DETAIL
...