Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 150(5): 1068-1075, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31912134

ABSTRACT

BACKGROUND: Formate can be incorporated into 10-formyl-tetrahydrofolate (10-formyl-THF), which is a substrate for purine synthesis, and after further reduction of the one-carbon group, may be used as a substrate for thymidylate synthesis and for homocysteine remethylation. OBJECTIVE: We examined plasma formate concentrations and the expression of genes involved in the production and utilization of formate in fetal and neonatal rats and in pregnant and virgin female rats. METHODS: In 1 experiment, plasma formate was measured by GC-MS in rats aged 1-56 d. In a second experiment, virgin female (adult) rats, 19-d pregnant rats (P) and their male and female fetuses (F), and 3-d-old (N) and 7-d-old (J) offspring had plasma and amniotic fluid analyzed for formate by GC-MS, mRNA abundance in liver and placenta by qPCR, and several plasma amino acids by HPLC. RESULTS: The plasma formate concentration was significantly higher in fetuses at embryonic day 19 than in the mothers. It was also significantly higher in neonatal rats but slowly returned to adult concentrations by ∼3 wk. The abundance of mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase (Mthfd1l) mRNA was significantly higher in placenta (PP) and F liver than in liver of N or J. Expression of mitochondrial bifunctional NAD-dependent methylene-tetrahydrofolate dehydrogenase/methenyl-tetrahydrofolate cyclohydrolase (Mthfd2) was significantly enriched in PP and liver of P, intermediate in F liver, and much lower in liver of N and J, relative to PP. Serine hydroxymethyltransferase 2 (Shmt2), methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), and glycine decarboxylase protein of the glycine cleavage system (Gldc) mRNA expression was significantly lower in PP compared with other groups. Cytoplasmic NAD(P)-dependent 10-formyl-tetrahydrofolate dehydrogenase (Aldh1/1) and mitochondrial NAD(P)-dependent 10-formyl-tetrahydrofolate dehydrogenase (Aldh1/2) , genes responsible for the catabolism of 10-formylTHF, were very weakly expressed in PP, low in livers of F and N, and reached the significantly higher adult levels in J. Serine, glycine, and methionine concentrations in plasma of F were significantly higher than in plasma of P. CONCLUSIONS: Formate metabolism is highly active in fetuses and in placenta of pregnant rats.


Subject(s)
Formates/blood , Aging , Animals , Animals, Newborn , Female , Fetus , Formates/chemistry , Liver/chemistry , Maternal-Fetal Exchange , Mothers , Placenta/chemistry , Pregnancy , Rats , Rats, Sprague-Dawley
2.
J Nutr ; 148(3): 358-363, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29546303

ABSTRACT

Background: Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Objective: Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Methods: Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 µg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Results: Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. Conclusion: We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S-adenosylmethionine pool which is depleted in this condition.


Subject(s)
Carbon/metabolism , Formates/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Vitamin B 12 Deficiency/complications , Vitamin B 12/blood , Animals , Carbon Dioxide/metabolism , Cytosol/metabolism , Folic Acid/blood , Glycine/metabolism , Male , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Random Allocation , Rats, Sprague-Dawley , S-Adenosylmethionine/metabolism , Sarcosine/metabolism , Serine/metabolism , Vitamin B 12 Deficiency/blood
3.
Conserv Physiol ; 5(1): cox055, 2017.
Article in English | MEDLINE | ID: mdl-28979786

ABSTRACT

Seabird parents use a conservative breeding strategy that favours long-term survival over intensive parental investment, particularly under harsh conditions. Here, we examine whether variation in several physiological indicators reflects the balance between parental investment and survival in common murres (Uria aalge) under a wide range of foraging conditions. Blood samples were taken from adults during mid-chick rearing from 2007 to 2014 and analysed for corticosterone (CORT, stress hormone), beta-hydroxybutyrate (BUTY, lipid metabolism reflecting ongoing mass loss), and haematocrit (reflecting blood oxygen capacity). These measures, plus body mass, were related to three levels of food availability (good, intermediate, and poor years) for capelin, the main forage fish for murres in this colony. Adult body mass and chick-feeding rates were higher in good years than in poor years and heavier murres were more likely to fledge a chick than lighter birds. Contrary to prediction, BUTY levels were higher in good years than in intermediate and poor years. Murres lose body mass just after their chicks hatch and these results for BUTY suggest that mass loss may be delayed in good years. CORT levels were higher in intermediate years than in good or poor years. Higher CORT levels in intermediate years may reflect the necessity of increasing foraging effort, whereas extra effort is not needed in good years and it is unlikely to increase foraging success in poor years. Haematocrit levels were higher in poor years than in good years, a difference that may reflect either their poorer condition or increased diving requirements when food is less available. Our long-term data set provided insight into how decisions about resource allocation under different foraging conditions are relating to physiological indicators, a relationship that is relevant to understanding how seabirds may respond to changes in marine ecosystems as ocean temperatures continue to rise.

4.
J Nutr ; 147(3): 346-352, 2017 03.
Article in English | MEDLINE | ID: mdl-28122934

ABSTRACT

Background: The one-carbon metabolism pathway is highly dependent on a number of B vitamins in order to provide one-carbon units for purine and thymidylate biosynthesis as well as homocysteine remethylation. Previous studies have examined folate and vitamin B-12 deficiency and their effects on formate metabolism; as of yet, to our knowledge, no studies on the effects of riboflavin deficiency on formate metabolism have been published.Objective: Our objective was to determine the effects of riboflavin deficiency on formate metabolism.Methods: Weanling male rats were randomly assigned either to control, riboflavin-replete (RR) or to experimental, riboflavin-deficient (RD) versions of the AIN-93G diet for 13 d, at which time a constant infusion of [13C]-formate was carried out to ascertain the effects of deficiency on formate production. Gas chromatography-mass spectrometry was used to measure plasma formate concentration and [13C]-formate enrichment. HPLC, LC-mass spectrometry (MS)/MS, and enzymatic assays were used for the measurement of one-carbon precursors and other metabolites.Results: RD rats had significantly lower rates of formate production (15%) as well as significantly reduced hepatic methylenetetrahydrofolate reductase activity (69%) and protein concentration (54%) compared with RR rats. There was no difference in plasma formate concentrations between the groups. Plasma serine, a potential one-carbon precursor, was significantly higher in RD rats (467 ± 73 µM) than in RR rats (368 ± 52 µM).Conclusions: Although deficiencies in folate and vitamin B-12 lead to major changes in plasma formate concentrations, riboflavin deficiency results in no significant difference; this disagrees with the prediction of a published mathematical model. Our observation of a lower rate of formate production is consistent with a role for flavoproteins in this process.


Subject(s)
Formates/metabolism , Riboflavin Deficiency/metabolism , Animal Feed/analysis , Animals , Carbon Isotopes , Diet/veterinary , Formates/blood , Isotope Labeling , Male , Rats , Rats, Sprague-Dawley
5.
Biochem J ; 472(2): 135-46, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26567272

ABSTRACT

One-carbon metabolism is usually represented as having three canonical functions: purine synthesis, thymidylate synthesis and methylation reactions. There is however a fourth major function: the metabolism of some amino acids (serine, glycine, tryptophan and histidine), as well as choline. These substrates can provide cells with more one-carbon groups than they need for these three canonical functions. Therefore, there must be mechanisms for the disposal of these one-carbon groups (when in excess) which maintain the complement of these groups required for the canonical functions. The key enzyme for these mechanisms is 10-formyl-THF (tetrahydrofolate) dehydrogenase (both mitochondrial and cytoplasmic isoforms) which oxidizes the formyl group to CO2 with the attendant reduction of NADP(+) to NADPH and release of THF. In addition to oxidizing the excess of these compounds, this process can reduce substantial quantities of NADP(+) to NADPH.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Amino Acids/metabolism , Cytosol/metabolism , Energy Metabolism , Folic Acid/metabolism , Mitochondria/metabolism , Models, Biological , Aldehyde Dehydrogenase/genetics , Amino Acids/administration & dosage , Animals , Cytosol/enzymology , Folic Acid/administration & dosage , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondria/enzymology , Nutritional Requirements , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors , S-Adenosylmethionine/metabolism , Serine/administration & dosage , Serine/biosynthesis
6.
Am J Physiol Endocrinol Metab ; 308(10): E921-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25805190

ABSTRACT

By virtue of its role in nucleotide synthesis, as well as the provision of methyl groups for vital methylation reactions, one-carbon metabolism plays a crucial role in growth and development. Formate, a critical albeit neglected component of one-carbon metabolism, occurs extracellularly and may provide insights into cellular events. We examined formate metabolism in chronically cannulated fetal sheep (gestation days 119-121, equivalent to mid-third trimester in humans) and in their mothers as well as in normal full-term lambs. Plasma formate levels were much higher in fetal lamb plasma and in amniotic fluid (191 ± 62 and 296 ± 154 µM, respectively) than in maternal plasma (33 ± 13 µM). Measurements of folate, vitamin B12, and homocysteine showed that these high formate levels could not be due to vitamin deficiencies. Elevated formate levels were also found in newborn lambs and persisted to about 8 wk of age. Formate was also found in sheep milk. Potential precursors of one-carbon groups were also measured in fetal and maternal plasma and in amniotic fluid. There were very high concentrations of serine in the fetus (∼1.6 mM in plasma and 3.5 mM in the amniotic fluid) compared with maternal plasma (0.19 mM), suggesting increased production of formate; however, we cannot rule out decreased formate utilization. Dimethylglycine, a choline metabolite, was also 30 times higher in the fetus than in the mother.


Subject(s)
Animals, Newborn/metabolism , Fetus/metabolism , Formates/metabolism , Pregnancy, Animal , Sheep , Amniotic Fluid/metabolism , Animals , Female , Folic Acid/metabolism , Homocysteine/blood , Postpartum Period/blood , Pregnancy , Pregnancy, Animal/blood , Sheep/embryology , Sheep/growth & development , Sheep/metabolism , Vitamin B 12/blood
7.
J Biol Chem ; 290(4): 2244-50, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25480787

ABSTRACT

It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [(13)C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 µmol·h(-1)·100 g of body weight(-1) in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.


Subject(s)
Folic Acid Deficiency/metabolism , Folic Acid/chemistry , Formates/chemistry , Mitochondria/metabolism , Animals , Choline/chemistry , Dimethylglycine Dehydrogenase , Formaldehyde/chemistry , Glycine/chemistry , Histidine/chemistry , Liver/metabolism , Male , Methionine/chemistry , Mitochondria, Liver/metabolism , Oxygen/chemistry , Rats , Rats, Sprague-Dawley , Sarcosine Dehydrogenase/metabolism , Serine/chemistry , Tetrahydrofolates/chemistry
8.
Amino Acids ; 46(8): 1885-91, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24748098

ABSTRACT

Formate, a crucial component of one-carbon metabolism, is increasingly recognized as an important intermediate in production and transport of one-carbon units. Unlike tetrahydrofolate-linked intermediates, it is not restricted to the intracellular milieu so that circulating levels of formate can provide insight into cellular events. We report a novel isotope-dilution, GC-MS assay employing derivatization by 2,3,4,5,6-pentafluorobenzyl bromide for the determination of formate in biological samples. This assay is robust and sensitive; it may be applied to the measurement of formate in serum, plasma and urine. We demonstrate how this method may be applied by providing the first characterization of formate levels in a human population; formate levels were higher in males than in females. We also show how this procedure may be applied for the measurement of in vivo kinetics of endogenous formate production in experimental animals.


Subject(s)
Formates/analysis , Gas Chromatography-Mass Spectrometry/methods , Animals , Female , Fluorobenzenes/chemistry , Formates/blood , Formates/urine , Humans , Male , Rats , Rats, Sprague-Dawley
9.
Clin Chem Lab Med ; 51(3): 571-8, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23241677

ABSTRACT

Plasma and urinary formate concentrations were recently found to be elevated during vitamin B12 and folate deficiencies. It was proposed that formate may be a valuable biomarker of impaired one-carbon metabolism. Formate is an essential intermediary metabolite in folate-mediated one-carbon metabolism and, despite its importance, our knowledge of its metabolism is limited. Formate can be produced from several substrates (e.g., methanol, branched chain fatty acids, amino acids), some reactions being folate-dependent while others are not. Formate removal proceeds via two pathways; the major one being folate-dependent. Formate is a potentially toxic molecule and we suggest that formate may play a role in some of the pathologies associated with defective one-carbon metabolism.


Subject(s)
Folic Acid Deficiency/metabolism , Formates/blood , Formates/urine , Vitamin B Deficiency/metabolism , Animals , Biomarkers/blood , Biomarkers/urine , Carbon/metabolism , Folic Acid/metabolism , Folic Acid Deficiency/pathology , Humans , Vitamin B Deficiency/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...