Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Nat Ecol Evol ; 8(6): 1118-1128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769434

ABSTRACT

Many shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species. Here we use a dedicated global survey of coral reef elasmobranchs to assess 66 fully protected areas embedded within a range of fisheries management regimes across 36 countries. We show that conservation benefits were primarily for reef-associated sharks, which were twice as abundant in fully protected areas compared with areas open to fishing. Conservation benefits were greatest in large protected areas that incorporate distinct reefs. However, the same benefits were not evident for rays or wide-ranging sharks that are both economically and ecologically important while also threatened with extinction. We show that conservation benefits from fully protected areas are close to doubled when embedded within areas of effective fisheries management, highlighting the importance of a mixed management approach of both effective fisheries management and well-designed fully protected areas to conserve tropical elasmobranch assemblages globally.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fisheries , Sharks , Skates, Fish , Animals , Conservation of Natural Resources/methods
2.
Nat Clim Chang ; 13(11): 1242-1249, 2023.
Article in English | MEDLINE | ID: mdl-37927330

ABSTRACT

Seafood is an important source of bioavailable micronutrients supporting human health, yet it is unclear how micronutrient production has changed in the past or how climate change will influence its availability. Here combining reconstructed fisheries databases and predictive models, we assess nutrient availability from fisheries and mariculture in the past and project their futures under climate change. Since the 1990s, availabilities of iron, calcium and omega-3 from seafood for direct human consumption have increased but stagnated for protein. Under climate change, nutrient availability is projected to decrease disproportionately in tropical low-income countries that are already highly dependent on seafood-derived nutrients. At 4 oC of warming, nutrient availability is projected to decline by ~30% by 2100 in low income countries, while at 1.5-2.0 oC warming, decreases are projected to be ~10%. We demonstrate the importance of effective mitigation to support nutritional security of vulnerable nations and global health equity.

3.
Proc Biol Sci ; 290(2008): 20231601, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37788704

ABSTRACT

Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.


Subject(s)
Anthozoa , Coral Reefs , Humans , Animals , Fisheries , Conservation of Natural Resources , Biomass , Nutrients , Fishes , Ecosystem
4.
Nat Commun ; 14(1): 5368, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666831

ABSTRACT

Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world's coral reef fisheries.


Subject(s)
Coral Reefs , Fisheries , Animals , Benchmarking , Biodiversity , Ecosystem
5.
Science ; 380(6650): 1155-1160, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37319199

ABSTRACT

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Extinction, Biological , Sharks , Skates, Fish , Animals , Humans , Fisheries , Biodiversity
6.
Nat Ecol Evol ; 6(12): 1808-1817, 2022 12.
Article in English | MEDLINE | ID: mdl-36192542

ABSTRACT

The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate Change , Anthozoa/physiology , Fisheries , Fishes/physiology , Nutrients
7.
Fish Fish (Oxf) ; 23(4): 800-811, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35912069

ABSTRACT

Wild-caught fish are a bioavailable source of nutritious food that, if managed strategically, could enhance diet quality for billions of people. However, optimising nutrient production from the sea has not been a priority, hindering development of nutrition-sensitive policies. With fisheries management increasingly effective at rebuilding stocks and regulating sustainable fishing, we can now begin to integrate nutritional outcomes within existing management frameworks. Here, we develop a conceptual foundation for managing fisheries for multispecies Maximum Nutrient Yield (mMNY). We empirically test our approach using size-based models of North Sea and Baltic Sea fisheries and show that mMNY is predicted by the relative contribution of nutritious species to total catch and their vulnerability to fishing, leading to trade-offs between catch and specific nutrients. Simulated nutrient yield curves suggest that vitamin D, which is deficient in Northern European diets, was underfished at fishing levels that returned maximum catch weights. Analysis of global catch data shows there is scope for nutrient yields from most of the world's marine fisheries to be enhanced through nutrient-sensitive fisheries management. With nutrient composition data now widely available, we expect our mMNY framework to motivate development of nutrient-based reference points in specific contexts, such as data-limited fisheries. Managing for mMNY alongside policies that promote access to fish could help close nutrient gaps for coastal populations, maximising the contribution of wild-caught fish to global food and nutrition security.

8.
Ecol Lett ; 25(8): 1741-1745, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35672133

ABSTRACT

Ecologists often rely on observational data to understand causal relationships. Although observational causal inference methodologies exist, predictive techniques such as model selection based on information criterion (e.g. AIC) remains a common approach used to understand ecological relationships. However, predictive approaches are not appropriate for drawing causal conclusions. Here, we highlight the distinction between predictive and causal inference and show how predictive techniques can lead to biased causal estimates. Instead, we encourage ecologists to valid causal inference methods such as the backdoor criterion, a graphical rule that can be used to determine causal relationships across observational studies.


Subject(s)
Confounding Factors, Epidemiologic , Causality , Data Interpretation, Statistical
9.
Proc Natl Acad Sci U S A ; 119(22): e2120817119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35605118

ABSTRACT

Fish are an important source of bioavailable micronutrients and essential fatty acids, and capture fisheries have potential to substantially reduce dietary deficiencies. Vigorous debate has focused on trade and fishing in foreign waters as drivers of inequitable distribution of volume and value of fish, but their impact on nutrient supplies from fish is unknown. We analyze global catch, trade, and nutrient composition data for marine fisheries to quantify distribution patterns among countries with differing prevalence of inadequate nutrient intake. We find foreign fishing relocates 1.5 times more nutrients than international trade in fish. Analysis of nutrient flows among countries of different levels of nutrient intake shows fishing in foreign waters predominantly (but not exclusively) benefits nutrient-secure nations, an outcome amplified by trade. Next, we developed a nutritional vulnerability framework that shows those small island developing states and/or African nations currently benefiting from trade and foreign fishing, and countries with low adaptive capacity, are most vulnerable to future changes in nutrient supplies. Climate change exacerbates vulnerabilities for many nations. Harnessing the potential of global fisheries to address dietary deficiencies will require greater attention to nutrition objectives in fisheries' licensing deals and trade negotiations.


Subject(s)
Internationality , Malnutrition , Animals , Commerce , Conservation of Natural Resources , Fisheries , Fishes , Food Supply , Humans , Hunting , Nutrients
10.
One Earth ; 5(1): 98-108, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35128392

ABSTRACT

Climate change is transforming coral reefs, threatening supply of essential dietary micronutrients from small-scale fisheries to tropical coastal communities. Yet the nutritional value of reef fisheries and climate impacts on micronutrient availability remain unclear, hindering efforts to sustain food and nutrition security. Here, we measure nutrient content in coral reef fishes in Seychelles and show that reef fish are important sources of selenium and zinc and contain levels of calcium, iron, and omega-3 fatty acids comparable with other animal-source foods. Using experimental fishing, we demonstrate that iron and zinc are enriched in fishes caught on regime-shifted macroalgal habitats, whereas selenium and omega-3 varied among species. We find substantial increases in nutrients available to fisheries over two decades following coral bleaching, particularly for iron and zinc after macroalgal regime shifts. Our findings indicate that, if managed sustainably, coral reef fisheries could remain important micronutrient sources along tropical coastlines despite escalating climate impacts.

11.
Trop Anim Health Prod ; 54(2): 90, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35133512

ABSTRACT

Imputation may be used to rescue genomic data from animals that would otherwise be eliminated due to a lower than desired call rate. The aim of this study was to compare the accuracy of genotype imputation for Afrikaner, Brahman, and Brangus cattle of South Africa using within- and multiple-breed reference populations. A total of 373, 309, and 101 Afrikaner, Brahman, and Brangus cattle, respectively, were genotyped using the GeneSeek Genomic Profiler 150 K panel that contained 141,746 markers. Markers with MAF ≤ 0.02 and call rates ≤ 0.95 or that deviated from Hardy Weinberg Equilibrium frequency with a probability of ≤ 0.0001 were excluded from the data as were animals with a call rate ≤ 0.90. The remaining data included 99,086 SNPs and 360 Afrikaner, 75,291 SNPs and 288 animals Brahman, and 97,897 SNPs and 99 Brangus animals. A total of 7986, 7002, and 7000 SNP from 50 Afrikaner and Brahman and 30 Brangus cattle, respectively, were masked and then imputed using BEAGLE v3 and FImpute v2. The within-breed imputation yielded accuracies ranging from 89.9 to 96.6% for the three breeds. The multiple-breed imputation yielded corresponding accuracies from 69.21 to 88.35%. The results showed that population homogeneity and numerical representation for within and across breed strategies, respectively, are crucial components for improving imputation accuracies.


Subject(s)
Cattle , Genome , Genotype , Animals , Breeding , Cattle/genetics , Genomics , Polymorphism, Single Nucleotide , South Africa
12.
Nat Food ; 3(10): 851-861, 2022 10.
Article in English | MEDLINE | ID: mdl-37117898

ABSTRACT

Injustices are prevalent in food systems, where the accumulation of vast wealth is possible for a few, yet one in ten people remain hungry. Here, for 194 countries we combine aquatic food production, distribution and consumption data with corresponding national policy documents and, drawing on theories of social justice, explore whether barriers to participation explain unequal distributions of benefits. Using Bayesian models, we find economic and political barriers are associated with lower wealth-based benefits; countries produce and consume less when wealth, formal education and voice and accountability are lacking. In contrast, social barriers are associated with lower welfare-based benefits; aquatic foods are less affordable where gender inequality is greater. Our analyses of policy documents reveal a frequent failure to address political and gender-based barriers. However, policies linked to more just food system outcomes centre principles of human rights, specify inclusive decision-making processes and identify and challenge drivers of injustice.

13.
Nat Food ; 3(12): 1075-1084, 2022 12.
Article in English | MEDLINE | ID: mdl-37118295

ABSTRACT

Wild-caught fish provide an irreplaceable source of essential nutrients in food-insecure places. Fishers catch thousands of species, yet the diversity of aquatic foods is often categorized homogeneously as 'fish', obscuring an understanding of which species supply affordable, nutritious and abundant food. Here, we use catch, economic and nutrient data on 2,348 species to identify the most affordable and nutritious fish in 39 low- and middle-income countries. We find that a 100 g portion of fish cost between 10 and 30% of the cheapest daily diet, with small pelagic fish (herring, sardine, anchovy) being the cheapest nutritious fish in 72% of countries. In sub-Saharan Africa, where nutrient deficiencies are rising, <20% of small pelagic catch would meet recommended dietary fish intakes for all children (6 months to 4 years old) living near to water bodies. Nutrition-sensitive policies that ensure local supplies and promote consumption of wild-caught fish could help address nutrient deficiencies in vulnerable populations.

14.
Curr Biol ; 31(21): 4817-4823.e5, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34499852

ABSTRACT

As climate change accelerates, species are shifting poleward and subtropical and tropical species are colonizing temperate environments.1-3 A popular approach for characterizing such responses is the community temperature index (CTI), which tracks the mean thermal affinity of a community. Studies in marine,4 freshwater,5 and terrestrial6 ecosystems have documented increasing CTI under global warming. However, most studies have only linked increasing CTI to increases in warm-affinity species. Here, using long-term monitoring of marine fishes across the Northern Hemisphere, we decomposed CTI changes into four underlying processes-tropicalization (increasing warm-affinity), deborealization (decreasing cold-affinity), borealization (increasing cold-affinity), and detropicalization (decreasing warm-affinity)-for which we examined spatial variability and drivers. CTI closely tracked changes in sea surface temperature, increasing in 72% of locations. However, 31% of these increases were primarily due to decreases in cold-affinity species, i.e., deborealization. Thus, increases in warm-affinity species were prevalent, but not ubiquitous. Tropicalization was stronger in areas that were initially warmer, experienced greater warming, or were deeper, while deborealization was stronger in areas that were closer to human population centers or that had higher community thermal diversity. When CTI (and temperature) increased, species that decreased were more likely to be living closer to their upper thermal limits or to be commercially fished. Additionally, warm-affinity species that increased had smaller body sizes than those that decreased. Our results show that CTI changes arise from a variety of underlying community responses that are linked to environmental conditions, human impacts, community structure, and species characteristics.


Subject(s)
Climate Change , Ecosystem , Animals , Cold Temperature , Fishes , Global Warming , Temperature
15.
Curr Biol ; 31(18): 4132-4138.e3, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34289388

ABSTRACT

Fish are rich in bioavailable micronutrients, such as zinc and iron, deficiencies of which are a global food security concern.1,2 Global marine fisheries yields are threatened by climate change and overfishing,3,4 yet understanding of how these stressors affect the nutrients available from fisheries is lacking.5,6 Here, using global assessments of micronutrient content2 and fisheries catch data,7 we investigate how the vulnerability status of marine fish species8,9 may translate into vulnerability of micronutrient availability at scales of both individual species and entire fishery assemblages for 157 countries. We further quantify the micronutrient evenness of catches to identify countries where interventions can optimize micronutrient supply. Our global analysis, including >800 marine fish species, reveals that, at a species level, micronutrient availability and vulnerability to both climate change and overfishing varies greatly, with tropical species displaying a positive co-tolerance, indicating greater persistence to both stressors at a community level.10 Global fisheries catches had relatively low nutritional vulnerability to fishing. Catches with higher species richness tend to be nutrient dense and evenly distributed but are more vulnerable to climate change, with 40% of countries displaying high vulnerability. Countries with high prevalence of inadequate micronutrient intake tend to have the most nutrient-dense catches, but these same fisheries are highly vulnerable to climate change, with relatively lower capacity to adapt.11 Our analysis highlights the need to consolidate fisheries, climate, and food policies to secure the sustainable contribution of fish-derived micronutrients to food and nutrition security.


Subject(s)
Climate Change , Fisheries , Animals , Conservation of Natural Resources , Ecosystem , Fishes , Iron , Micronutrients/analysis
17.
iScience ; 24(3): 102097, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33681724

ABSTRACT

Proximity and size of the nearest market ('market gravity') have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans.

18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723036

ABSTRACT

Species' traits, rather than taxonomic identities, determine community assembly and ecosystem functioning, yet biogeographic patterns have been far less studied for traits. While both environmental conditions and evolutionary history shape trait biogeography, their relative contributions are largely unknown for most organisms. Here, we explore the global biogeography of reef fish traits for 2,786 species from 89 ecoregions spanning eight marine realms with contrasting environmental conditions and evolutionary histories. Across realms, we found a common structure in the distribution of species traits despite a 10-fold gradient in species richness, with a defined "backbone" of 21 trait combinations shared by all realms globally, both temperate and tropical. Across ecoregions, assemblages under similar environmental conditions had similar trait compositions despite hosting drastically different species pools from separate evolutionary lineages. Thus, despite being separated by thousands of kilometers and millions of years of evolution, similar environments host similar trait compositions in reef fish assemblages worldwide. Our findings suggest that similar trait-based management strategies can be applied among regions with distinct species pools, potentially improving conservation outcomes across diverse jurisdictions.


Subject(s)
Biodiversity , Coral Reefs , Fishes/classification , Quantitative Trait, Heritable , Animals , Ecosystem , Oceans and Seas , Phylogeny
20.
Nature ; 583(7818): 801-806, 2020 07.
Article in English | MEDLINE | ID: mdl-32699418

ABSTRACT

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Coral Reefs , Ecosystem , Fisheries/economics , Fisheries/statistics & numerical data , Sharks/physiology , Animals , Geographic Mapping , Population Density , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...