Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 63(6): 1376-1390, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37673672

ABSTRACT

The genus Agave is an ecological keystone of American deserts and both culturally and economically important in Mexico. Agave is a large genus of about 250 species. The radiation of Agave is marked by an initial adaptation to desert environments and then a secondary diversification of species associated with pollinator groups, such as hummingbirds and nocturnal moths. Phylogenetic analyses place Agave subgenus Manfreda, or the "herbaceous agaves," in a monophyletic clade that likely evolved in part as an adaptation to novel pollination vectors. Here, we present a morphological and observational study assessing the evolution of floral form in response to pollinator specialization within this understudied group. We found significant visitation by hummingbirds and nocturnal moths to several species within the Agave subgenus Manfreda. These observations also align with our morphological analyses of floral organs and support the evolution of distinct pollination syndromes. We found that not all floral morphology is consistent within a pollination syndrome, suggesting hidden diversity in the evolution of floral phenotypes in Agave. We also characterize the morphological variation between herbarium and live specimens, demonstrating that special consideration needs to be made when combining these types of data. This work identifies the potential for studying the functional evolution of diverse floral forms within Agave and demonstrates the need to further explore ecological and evolutionary relationships to understand pollinator influence on diversification in the genus.


Subject(s)
Agave , Moths , Animals , Pollination/physiology , Phylogeny , Flowers/anatomy & histology , Moths/genetics , Birds/physiology
2.
J Parasitol ; 105(5): 760-768, 2019 10.
Article in English | MEDLINE | ID: mdl-31625812

ABSTRACT

The flow regime of a river is an important driver of many ecosystem components. However, few studies explore how differences in flow rates and water chemistry can influence communities of parasites and their hosts. Here, we investigate the impact of dissolved oxygen, pH, salinity, water temperature, and river flow on the abundance and prevalence of cymothoid isopod parasitism (Lironeca ovalis) of the Bay Anchovy (Anchoa mitchilli) in the Alafia and Hillsborough rivers of Tampa Bay (Florida). We also explore seasonality by comparing monthly samples preserved throughout 2005-2007. Although both the Alafia and Hillsborough rivers had similar average water temperatures and salinity, and similar wet and dry season cycles, the upstream damming of the Hillsborough River had numerous negative effects on water flow rate, dissolved oxygen content, and acidity. This disruption in water quality corresponded with a lower abundance of anchovy hosts, fewer free-swimming cymothoids, and low prevalence of anchovy parasitism. Anchovies were much more abundant in the Alafia River, but flow negatively affected abundance-a negative effect that could be mitigated by positive changes in water temperature, salinity, and pH. Flow rates also negatively affected free-swimming cymothoid abundance; however, water flow was less important in predicting their parasitism of anchovies. In Alafia, fewer anchovies were parasitized when dissolved oxygen was high and water acidity was low, but more were parasitized during the wet season. These findings corroborate predictions that flow can moderate habitat stability and complexity which, in turn, can impact opportunities for parasitism of host communities.


Subject(s)
Ectoparasitic Infestations/veterinary , Fish Diseases/parasitology , Fishes/parasitology , Isopoda/physiology , Rivers/chemistry , Water Movements , Animals , Binomial Distribution , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology , Fish Diseases/epidemiology , Fishes/growth & development , Gills/parasitology , Gills/pathology , Hydrogen-Ion Concentration , Least-Squares Analysis , Linear Models , Oxygen/analysis , Oxygen/chemistry , Prevalence , Salinity , Seasons , Temperature , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...