Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bodyw Mov Ther ; 22(3): 639-642, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30100290

ABSTRACT

This study examined the effects of KT tape (KT) applied in an inhibitory manner on muscle activity, measured maximal grip strength, and perceived maximal grip strength in regular KT-users and non-users. This study was a single-blinded crossover study with sixty participants including 27 kT-users and 33 non-users. Participants underwent maximal grip strength tests with and without inhibitory KT applied across the wrist extensors. Muscle activity and maximal grip strength were measured, while perceived maximal grip strength was rated using a visual analogue scale. No significant interaction effect was found between taping conditions and participant KT-experience for muscle activity (F = 0.825, p = 0.367), measured grip strength (F = 1.018, p = 0.317) or perceived grip strength (F = 0.122, p = 0.728). No significant differences were observed in the EMG activity between taping conditions for either KT-users (p = 0.367) or non-users (p = 0.215). A similar trend was found in the measured grip strength (KT-users: p = 0.317; non-users: p = 0.294) and perceived grip strength (KT-users: p = 0.728; non-users: p = 0.063). KT applied in an inhibitory manner does not impede EMG activity, measured maximal grip strength, or perceived maximal grip strength in adults, regardless of their preconceived notions of KT.


Subject(s)
Athletic Tape , Hand Strength/physiology , Perception , Adult , Cross-Over Studies , Electromyography , Female , Humans , Male , Single-Blind Method , Young Adult
2.
J Appl Biomech ; 34(6): 483-487, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29989456

ABSTRACT

A stable gaze is necessary to optimize visual conditions during running. Head accelerations generally remain stable when looking in front; however, it is unclear if this response is similar when the head is turned sideways, and whether other adaptive strategies are present to maintain this stability. The purpose of this study, therefore, was to examine whether runners maintained stable head accelerations while gazing at fixed targets in front and to their sides. The authors collected biomechanical data from 13 runners as they directed their gaze to visual targets located in front, 45°, and 90° to the sides at a random sequence. Vertical head and tibial accelerations were the primary outcome measures, while vertical loading rate, footstrike angle, contact time, stride length, and stride rate were the secondary measures. A reduction in vertical head accelerations was found in the rightmost direction (P = .04), while an increase in vertical tibial accelerations was found on the same direction (P = .02). No other significant differences were observed for the other variables. The results of this study suggest that the tibia accommodated the increased shock to maintain head stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...