Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Physiol Rep ; 12(16): e70001, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39161054

ABSTRACT

Brain-derived neurotrophic factor (BDNF) content and signaling has been identified as one potential regulator of amyloid precursor protein (APP) processing. Recently published work has demonstrated that BDNF reduces BACE1 activity while also elevating the inhibition of GSK3ß in the prefrontal cortex of male C57BL/6J mice. These results provide evidence that BDNF alters APP processing by reducing BACE1 activity, which may act through GSK3ß inhibition. The purpose of this study was to further explore the role of GSK3ß in BDNF-induced regulation on BACE1 activity. We utilized a cell culture and an in vitro activity assay model to pharmacologically target BDNF and GSK3ß signaling to confirm its involvement in the BDNF response. Treatment of differentiated SH-SY5Y neuronal cells with 75 ng/mL BDNF resulted in elevated pTrkB content, pAkt content, pGSK3ß content, and reduced BACE1 activity. An in vitro BACE1 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF reduced BACE1 activity; however, in the presence of TrkB or Akt inhibition, this effect was abolished. An in vitro ADAM10 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF did not alter ADAM10 activity. However, inhibiting BDNF signaling reduced ADAM10 activity. Collectively these studies suggest that GSK3ß inhibition may be necessary for BDNF-induced reductions in BACE1 activity. These findings will allow for the optimization of future therapeutic strategies by selectively targeting TrkB activation and GSK3ß inhibition.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Brain-Derived Neurotrophic Factor , Glycogen Synthase Kinase 3 beta , Mice, Inbred C57BL , Neurons , Proto-Oncogene Proteins c-akt , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Brain-Derived Neurotrophic Factor/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Neurons/metabolism , Neurons/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Humans , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Mice , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Signal Transduction , Cell Line, Tumor , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Membrane Glycoproteins/metabolism
2.
iScience ; 27(4): 109468, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550985

ABSTRACT

Nutraceutical approaches to promote adipose tissue thermogenesis may help to prevent obesity onset. Creatine is a critical regulator of adipose metabolic function and low-dose lithium supplementation has been shown to promote adipose thermogenesis. In the present study, we sought to directly compare the two supplements for their effects on adipose metabolism and thermogenesis. We show that both supplements increase daily energy expenditure (EE) and reduce body mass in male Sprague-Dawley rats. Lithium increased brown adipose tissue (BAT) mitochondrial and lipolytic proteins that are associated with thermogenesis, while creatine increased BAT UCP1 and mitochondrial respiration. The BAT thermogenic findings were not observed in females. White adipose tissue and skeletal muscle markers of thermogenesis were unaltered with the supplements. Together, the data show that low-dose lithium and creatine have diverging effects on markers of BAT thermogenesis and that each increase daily EE and lower body mass in a sex-dependent manner.

3.
J Appl Physiol (1985) ; 119(10): 1097-104, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26404616

ABSTRACT

Obesity and type 2 diabetes are significant risk factors in the development of neurodegenerative diseases, such as Alzheimer's disease. A variety of cellular mechanisms, such as altered Akt and AMPK and increased inflammatory signaling, contribute to neurodegeneration. Exercise training can improve markers of neurodegeneration, but the underlying mechanisms remain unknown. The purpose of this study was to determine the effects of a single bout of exercise on markers of neurodegeneration and inflammation in brains from mice fed a high-fat diet. Male C57BL/6 mice were fed a low (LFD; 10% kcal from lard)- or a high-fat diet (HFD; 60% kcal from lard) for 7 wk. HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h. The HFD increased body mass and glucose intolerance (both P < 0.05). This was accompanied by an approximately twofold increase in the phosphorylation of Akt, ERK, and GSK in the cortex (P < 0.05). Following exercise, there was a decrease in beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; P < 0.05) and activity (P < 0.001). This was accompanied by a reduction in AMPK phosphorylation, indicative of a decline in cellular stress (P < 0.05). Akt and ERK phosphorylation were decreased following exercise in HFD mice to a level similar to that of the LFD mice (P < 0.05). This study demonstrates that a single bout of exercise can reduce BACE1 content and activity independent of changes in adiposity. This effect is associated with reductions in Akt, ERK, and AMPK signaling in the cortex.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Glucose Intolerance/metabolism , MAP Kinase Signaling System/physiology , Obesity/metabolism , Physical Conditioning, Animal/physiology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cerebral Cortex/metabolism , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Physical Conditioning, Animal/methods
4.
Exp Physiol ; 100(4): 450-62, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25663294

ABSTRACT

NEW FINDINGS: What is the central question of this study? The aim was to determine whether mitochondrial protein content of perilipin 3 (PLIN3) and perilipin 5 (PLIN5) is increased following endurance training and whether mitochondrial PLIN5 protein is increased to a greater extent in endurance-trained rats when compared with sedentary rats following acute contraction. What is the main finding and its importance? Mitochondrial PLIN3 but not PLIN5 protein was increased in endurance-trained compared with sedentary rats, suggesting a mitochondrial role for PLIN3 due to chronic exercise. Contrary to our hypothesis, acute mitochondrial PLIN5 protein was similar in both sedentary and endurance-trained rats. Endurance training results in an increased association between skeletal muscle lipid droplets and mitochondria. This association is likely to be important for the expected increase in intramuscular fatty acid oxidation that occurs with endurance training. The perilipin family of lipid droplet proteins, PLIN(2-5), are thought to play a role in skeletal muscle lipolysis. Recently, results from our laboratory demonstrated that skeletal muscle mitochondria contain PLIN3 and PLIN5 protein. Furthermore, 30 min of stimulated contraction induces an increased mitochondrial PLIN5 content. To determine whether mitochondrial content of PLIN3 and PLIN5 is altered with endurance training, Sprague-Dawley rats were randomized into sedentary or endurance-trained groups for 8 weeks of treadmill running followed by an acute (30 min) sciatic nerve stimulation to induce lipolysis. Mitochondrial PLIN3 protein was ∼1.5-fold higher in red gastrocnemius of endurance-trained rats compared with sedentary animals, with no change in mitochondrial PLIN5 protein. In addition, there was an increase in plantaris intramuscular lipid storage. Acute electrically stimulated contraction in red gastrocnemius from sedentary and endurance-trained rats resulted in a similar increase of mitochondrial PLIN5 between these two groups, with no net change in PLIN3 in either group. Plantaris intramuscular lipid content decreased to a similar extent in sedentary and endurance-trained rats. These results suggest that while total mitochondrial PLIN5 content is not altered by endurance training, PLIN5 does have an acute role in the mitochondrial fraction during muscle contraction. Conversely, mitochondrial PLIN3 does not change acutely with muscle contraction, but PLIN3 content was increased following endurance training, indicating a role in chronic adaptations of skeletal muscle.


Subject(s)
Electric Stimulation , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria, Muscle/physiology , Muscle Proteins/metabolism , Myocardial Contraction/physiology , Physical Conditioning, Animal/methods , Physical Endurance/physiology , Animals , Male , Perilipin-3 , Perilipin-5 , Rats , Rats, Sprague-Dawley , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL