Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 117(9): 1037-48, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25170067

ABSTRACT

Cerebral blood flow responses to transient blood pressure challenges are frequently attributed to cerebral autoregulation (CA), yet accumulating evidence indicates vascular properties like compliance are also influential. We hypothesized that middle cerebral blood velocity (MCAv) dynamics during or following a transient blood pressure perturbation can be accurately explained by the windkessel mechanism. Eighteen volunteers underwent blood pressure manipulations, including bilateral thigh-cuff deflation and sit-to-stand maneuvers under normocapnic and hypercapnic (5% CO2) conditions. Pressure-flow recordings were analyzed using a windkessel analysis approach that partitions the frequency-dependent resistance and compliance contributions to MCAv dynamics. The windkessel was typically able to explain more than 50% of the MCAv variance, as indicated by R(2) values for both the flow recovery and postrecovery phase. The most consistent predictors of MCAv dynamics under the control condition were the windkessel capacitive gain and high-frequency resistive gain. However, there were significant interindividual variations in the composition of windkessel predictors. Hypercapnia consistently reduced the capacitive gain and enhanced the low-frequency (0.04-0.20 Hz) resistive gain for both thigh-cuff deflation and sit-to-stand trials. These findings indicate that 1) MCAv dynamics during acute transient hypotension challenges are dominated by cerebrovascular windkessel properties independent of CA; 2) there is significant heterogeneity in windkessel properties between individuals; and 3) hemodynamic effects of hypercapnia during transient blood pressure challenges primarily reflect changes in windkessel properties rather than pure CA impairment.


Subject(s)
Blood Flow Velocity/physiology , Blood Pressure/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Middle Cerebral Artery/physiopathology , Female , Homeostasis/physiology , Humans , Hypercapnia/physiopathology , Male , Ultrasonography, Doppler, Transcranial , Young Adult
2.
Am J Physiol Heart Circ Physiol ; 303(6): H658-71, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22821992

ABSTRACT

We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n = 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n = 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n = 16) who underwent step changes in end-tidal P(CO2) (P(ET)(CO2) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in P(ET)(CO2) were positively related to coherence [LF: ß = 0.0065 arbitrary units (AU)/mmHg and VLF: ß = 0.011 AU/mmHg, both P < 0.01] and inversely related to phase (LF: ß = -0.026 rad/mmHg and VLF: ß = -0.018 rad/mmHg, both P < 0.01) and normalized gain (LF: ß = -0.042%/mmHg(2) and VLF: ß = -0.013%/mmHg(2), both P < 0.01). However, Pet(CO(2)) was positively associated with gain (LF: ß = 0.0070 cm·s(-1)·mmHg(-2), P < 0.05; and VLF: ß = 0.014 cm·s(-1)·mmHg(-2), P < 0.01). Thus, during changes in P(ET)(CO2), LF phase was inversely related to LF gain (ß = -0.29 cm·s(-1)·mmHg(-1)·rad(-1), P < 0.01) but positively related to LF normalized gain (ß = 1.3% mmHg(-1)/rad, P < 0.01). These findings collectively suggest that only select CA metrics can be used interchangeably and that interpretation of these measures should be done cautiously.


Subject(s)
Cerebrovascular Circulation , Middle Cerebral Artery/physiopathology , Adult , Blood Flow Velocity , Blood Pressure , British Columbia , Exercise , Female , Fourier Analysis , Heart Rate , Homeostasis , Humans , Hypercapnia/physiopathology , Hypocapnia/physiopathology , Linear Models , Male , Middle Cerebral Artery/diagnostic imaging , Models, Cardiovascular , New Zealand , Observer Variation , Prospective Studies , Regional Blood Flow , Reproducibility of Results , Respiration , Retrospective Studies , Supine Position , Texas , Tourniquets , Ultrasonography, Doppler, Pulsed , Ultrasonography, Doppler, Transcranial , Young Adult
3.
J Appl Physiol (1985) ; 113(5): 700-6, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22744970

ABSTRACT

Although the cerebrovasculature is known to be exquisitely sensitive to CO(2), there is no consensus on whether the sympathetic nervous system plays a role in regulating cerebrovascular responses to changes in arterial CO(2). To address this question, we investigated human cerebrovascular CO(2) reactivity in healthy participants randomly assigned to the α(1)-adrenoreceptor blockade group (9 participants; oral prazosin, 0.05 mg/kg) or the placebo control (9 participants) group. We recorded mean arterial blood pressure (MAP), heart rate (HR), mean middle cerebral artery flow velocity (MCA(V mean)), and partial pressure of end-tidal CO(2) (Pet(CO(2))) during 5% CO(2) inhalation and voluntary hyperventilation. CO(2) reactivity was quantified as the slope of the linear relationship between breath-to-breath Pet(CO(2)) and the average MCAv(mean) within successive breathes after accounting for MAP as a covariate. Prazosin did not alter resting HR, Pet(CO(2)), MAP, or MCA(V mean). The reduction in hypocapnic CO(2) reactivity following prazosin (-0.48 ± 0.093 cm·s(-1) · mmHg(-1)) was greater compared with placebo (-0.19 ± 0.087 cm · s(-1) · mmHg(-1); P < 0.05 for interaction). In contrast, the change in hypercapnic CO(2) reactivity following prazosin (-0.23 cm · s(-1) · mmHg(-1)) was similar to placebo (-0.31 cm · s(-1) · mmHg(-1); P = 0.50 for interaction). These data indicate that the sympathetic nervous system contributes to CO(2) reactivity via α(1)-adrenoreceptors; blocking this pathway with prazosin reduces CO(2) reactivity to hypocapnia but not hypercapnia.


Subject(s)
Blood Pressure/physiology , Carbon Dioxide/physiology , Cerebrovascular Circulation/physiology , Heart Rate/physiology , Receptors, Adrenergic, alpha-1/physiology , Sympathetic Nervous System/physiology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/therapeutic use , Adult , Blood Flow Velocity/drug effects , Blood Flow Velocity/physiology , Blood Pressure/drug effects , Carbon Dioxide/administration & dosage , Cerebrovascular Circulation/drug effects , Female , Heart Rate/drug effects , Humans , Hypercapnia/chemically induced , Hypercapnia/physiopathology , Hypocapnia/physiopathology , Hypocapnia/prevention & control , Male , Sympathetic Nervous System/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...