Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995007

ABSTRACT

Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and allows the selective entry of proteins harboring a ciliary targeting sequence (CTS). However, CTSs are not stereotyped and previously reported sequences are insufficient to drive efficient ciliary localisation across diverse cell types. Here, we describe a short peptide sequence that efficiently targets transmembrane proteins to primary cilia in all tested cell types, including human neurons. We generate human-induced pluripotent stem cell (hiPSC) lines stably expressing a transmembrane construct bearing an extracellular HaloTag and intracellular fluorescent protein, which enables the bright, specific labeling of primary cilia in neurons and other cell types to facilitate studies of cilia in health and disease. We demonstrate the utility of this resource by developing an image analysis pipeline for the automated measurement of primary cilia to detect changes in their length associated with altered signaling or disease state.


Subject(s)
Cilia , Induced Pluripotent Stem Cells , Membrane Proteins , Cilia/metabolism , Humans , Membrane Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Animals , Neurons/metabolism , Amino Acid Sequence , Cell Line , Protein Transport
2.
Trends Cell Biol ; 33(11): 979-990, 2023 11.
Article in English | MEDLINE | ID: mdl-37302961

ABSTRACT

Primary cilia protrude from most vertebrate cell bodies and act as specialized 'signalling antennae' that can substantially lengthen or retract in minutes to hours in response to specific stimuli. Here, we review the conditions and mechanisms responsible for regulating primary cilia length (PCL) in mammalian nonsensory neurons, and propose four models of how they could affect ciliary signalling and alter cell state and suggest experiments to distinguish between them. These models include (i) the passive indicator model, where changes in PCL have no consequence; (ii) the rheostat model, in which a longer cilium enhances signalling; (iii) the local concentration model, where ciliary shortening increases the local protein concentration to facilitate signalling; and (iv) the altered composition model where changes in PCL skew signalling.


Subject(s)
Cilia , Signal Transduction , Humans , Animals , Cilia/metabolism , Vertebrates , Neurons , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...