Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(19): 6561-6567, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33890955

ABSTRACT

High-performance thermoelectric materials are currently being sought after to recycle waste heat. Copper chalcogenides in general are materials of great interest because of their naturally low thermal conductivity and readily modifiable electronic properties. The compounds Cu5Sn2Q7 were previously reported to have metal-like properties, which is not a desirable characteristic for thermoelectric materials. The aim of this study was to reduce the carrier concentration of these materials by Zn-doping, and then investigate the electronic and thermoelectric properties of the doped materials in comparison to the undoped ones. The compounds were synthesized using both the traditional solid-state tube method and ball-milling. The crystal structures were characterized using powder X-ray diffraction, which confirmed that all materials crystallize in the monoclinic system with the space group C2. With the partial substitution of zinc for copper atoms, the compounds exhibited an overall improvement in their thermoelectric properties. Figure of merit values were determined to be 0.20 for Cu4ZnSn2Se7 at 615 K and 0.05 for Cu4ZnSn2Te7 at 575 K.

2.
ACS Appl Mater Interfaces ; 11(49): 45629-45635, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31738048

ABSTRACT

In this work, polycrystalline n-type Mg2Si0.30Sn0.67Bi0.03 dispersed with x wt % ß-SiC nanoparticles (x = 0, 0.5, 1.0, 1.5, and 3.0) thermoelectric materials were fabricated by a solid-state reaction in a low-cost container, consolidated by hot-pressing. We obtained figure of merit values zT above 1.4 at 773 K along with enhanced mechanical properties by adding ß-SiC into an Mg2Si0.30Sn0.67Bi0.03 matrix. Incorporation of SiC nanoparticles has thusly simultaneously increased toughness and, depending on the SiC content, thermoelectric performance. The peak figure of merit was improved from zT = 1.33 for Mg2Si0.30Sn0.67Bi0.03 to 1.45 for Mg2Si0.30Sn0.67Bi0.03 with 3 wt % at 773 K.

3.
ACS Appl Mater Interfaces ; 10(47): 40585-40591, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30387592

ABSTRACT

Mg2(Si,Sn)-based compounds have shown great promise for thermoelectric (TE) applications, as they are nontoxic and comprised abundantly available constituent elements. In this work, the crystal structures and TE properties of polycrystalline materials with nominal compositions Mg2Si0.35Sn0.65- xBi x ( x = 0, 0.015, 0.030, and 0.045) and Mg2Si ySn0.97- yBi0.03 ( y = 0.30, 0.325, and 0.35) have been investigated. The electrical conductivity, Seebeck coefficient, and thermal conductivity are strongly affected by the presence of Bi. Undoped samples showed higher values of Seebeck coefficients (below 600 K), lower electrical conductivity, and lower thermal conductivity (above 600 K) in comparison to the Bi-doped samples. Furthermore, the signs of Seebeck coefficients are all negative, confirming that n-type conduction is dominant in these materials. Electrical conductivity was enhanced by increasing the Bi content up to 3% on the Si/Sn site because of the increasing amount of electron donors, and the absolute value of Seebeck coefficient decreased. When the Bi content is greater than 3%, lower zT values were obtained at 773 K. Thermal conductivity values might decrease with increasing Sn alloying for Mg2Si ySn0.97- yBi0.03, as mass and strain fluctuation caused by alloying can effectively scatter phonons. However, a different behavior was observed in higher Sn content material, possibly because of the absence of Mg atoms at the interstitial site [Mgi, on (1/2, 1/2, 1/2)] and vacancies of Mg atoms at the (1/4, 1/4, 1/4) site, as confirmed by Rietveld refinements. Outstanding figure of merit values in excess of unity were achieved with all samples, culminating in  zTmax = 1.35.

SELECTION OF CITATIONS
SEARCH DETAIL
...