Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 134(1): 36-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36417198

ABSTRACT

In chronic mountain sickness (CMS), increased blood oxygen (O2)-carrying capacity due to excessive erythrocytosis (EE, [Hb] ≥ 21 g/dL) could be offset, especially during exercise by both impaired cardiac output (Q̇t) and O2 diffusion limitation in lungs and muscle. We hypothesized that EE results in reduced peak V̇o2 despite increased blood O2-carrying capacity, and that isovolumic hemodilution (IVHD) improves exercise capacity. In 14 male residents of Cerro de Pasco, Peru (4,340 m), six with and eight without EE, we measured peak cycle-exercise capacity, V̇o2, Q̇t, arterial blood gas parameters, and (resting) blood volume. This was repeated for participants with EE after IVHD, reducing hematocrit by 20% (from 67% to 53%). From these data, we quantified the major O2 transport pathway components (ventilation, pulmonary alveolar-capillary diffusion, Q̇t, and blood-muscle mitochondria diffusion). Participants with EE had similar peak V̇o2, systemic O2 delivery, and O2 extraction as non-EE controls, however, with lower Q̇t and higher arterial [O2]. After IVHD, peak V̇o2 was preserved (but not enhanced), with lower O2 delivery (despite higher Q̇t) balanced by greater O2 extraction. The considerable variance in exercise capacity across the 14 individuals was explained essentially completely by differences in both pulmonary and muscle O2 diffusional conductances and not by any differences in ventilation, [Hb], nor Q̇t. In conclusion, EE does not result in lower peak V̇o2 in Andean males, and IVHD maintains, but does not enhance, exercise capacity.NEW & NOTEWORTHY Male Andean highlanders with and without excessive erythrocytosis (EE) have similar peak V̇o2 at 4,340 m, with higher arterial [O2] in EE and lower cardiac output (Q̇t), thus maintaining similar O2 delivery. Peak V̇o2 in participants with EE was unaffected by isovolumic hemodilution (hematocrit reduced from 67% to 53%), with lower O2 delivery balanced by slightly increased Q̇t and greater O2 extraction. Differences in lung and muscle diffusing capacity, and not hematocrit variation, accounted for essentially all interindividual variance in peak V̇o2.


Subject(s)
Altitude Sickness , Polycythemia , Humans , Male , Altitude , Exercise Tolerance , Hemodilution , Oxygen/metabolism , Oxygen Consumption
2.
J Clin Sleep Med ; 18(10): 2423-2432, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35855526

ABSTRACT

STUDY OBJECTIVES: Chronic mountain sickness (CMS) is commonly observed among Andean and other highland populations. Sleep-disordered breathing (SDB) is highly prevalent at high altitude, and SDB and nocturnal hypoxemia have been observed in CMS. Phlebotomy is commonly performed to treat CMS, but it is unknown whether reducing hematocrit improves SDB. We hypothesized that isovolemic hemodilution (IVHD) in CMS would reduce SBD severity and improve sleep efficiency. METHODS: Six participants with CMS and 8 without CMS, all residents of Cerro de Pasco, Peru (altitude 4340 m), completed baseline nocturnal sleep studies. CMS participants then underwent IVHD, and nocturnal sleep studies were repeated 24-48 hours after IVHD. We analyzed sleep apnea severity, nocturnal oxygenation, and sleep quality in those with CMS relative to those without CMS, and the effects of IVHD in CMS participants. RESULTS: Participants with CMS did not have altered sleep architecture, sleep apnea severity, or nocturnal oxygenation relative to non-CMS participants. However, IVHD in CMS increased apnea-hypopnea index (40.9 ± 6.9 events/h to 61.5 ± 7.7 events/h, P = .009). IVHD increased oxyhemoglobin desaturation index (P = .008) and the percentage of sleep time spent with oxyhemoglobin saturation at or below 80% (P = .012). There was no effect of IVHD on sleep efficiency, arousal index, or sleep staging. CONCLUSIONS: In this cohort, CMS was not associated with worsened SDB or changes in sleep architecture. IVHD, a putative therapeutic option for participants with CMS, appears to worsen nocturnal oxygenation and SDB within 48 hours post-IVHD. CITATION: Sanchez-Azofra A, Villafuerte FC, DeYoung PN, et al. Isovolemic hemodilution in chronic mountain sickness acutely worsens nocturnal oxygenation and sleep apnea severity. J Clin Sleep Med. 2022;18(10):2423-2432.


Subject(s)
Altitude Sickness , Sleep Apnea Syndromes , Altitude , Altitude Sickness/complications , Altitude Sickness/therapy , Chronic Disease , Hemodilution , Humans , Oxyhemoglobins , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy
3.
Front Physiol ; 11: 437, 2020.
Article in English | MEDLINE | ID: mdl-32435207

ABSTRACT

Andean highlanders are challenged by chronic hypoxia and many exhibit elevated hematocrit (Hct) and blunted ventilation compared to other high-altitude populations. While many Andeans develop Chronic Mountain Sickness (CMS) and excessive erythrocytosis, Hct varies markedly within Andean men and women and may be driven by individual differences in ventilatory control and/or sleep events which exacerbate hypoxemia. To test this hypothesis, we quantified relationships between resting ventilation and ventilatory chemoreflexes, sleep desaturation, breathing disturbance, and Hct in Andean men and women. Ventilatory measures were made in 109 individuals (n = 63 men; n = 46 women), and sleep measures in 45 of these participants (n = 22 men; n = 23 women). In both men and women, high Hct was associated with low daytime SpO2 (p < 0.001 and p < 0.002, respectively) and decreased sleep SpO2 (mean, nadir, and time <80%; all p < 0.02). In men, high Hct was also associated with increased end-tidal PCO2 (p < 0.009). While ventilatory responses to hypoxia and hypercapnia did not predict Hct, decreased hypoxic ventilatory responses were associated with lower daytime SpO2 in men (p < 0.01) and women (p < 0.009) and with lower nadir sleep SpO2 in women (p < 0.02). Decreased ventilatory responses to CO2 were associated with more time below 80% SpO2 during sleep in men (p < 0.05). The obstructive apnea index and apnea-hypopnea index also predicted Hct and CMS scores in men after accounting for age, BMI, and SpO2 during sleep. Finally, heart rate response to hypoxia was lower in men with higher Hct (p < 0.0001). These data support the idea that hypoventilation and decreased ventilatory sensitivity to hypoxia are associated with decreased day time and nighttime SpO2 levels that may exacerbate the stimulus for erythropoiesis in Andean men and women. However, interventional and longitudinal studies are required to establish the causal relationships between these associations.

4.
Chest ; 142(4): 877-884, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22302297

ABSTRACT

BACKGROUND: Chronic mountain sickness (CMS) is characterized by a combination of excessive erythrocytosis,severe hypoxemia, and pulmonary hypertension, all of which affect exercise capacity. METHODS: Thirteen patients with CMS and 15 healthy highlander and 15 newcomer lowlander control subjects were investigated at an altitude of 4,350 m (Cerro de Pasco, Peru). All of them underwent measurements of diffusing capacity of lung for nitric oxide and carbon monoxide at rest, echocardiography for estimation of mean pulmonary arterial pressure and cardiac output at rest and at exercise, and an incremental cycle ergometer cardiopulmonary exercise test. RESULTS: The patients with CMS, the healthy highlanders, and the newcomer lowlanders reached a similar maximal oxygen uptake at 32 1, 32 2, and 33 2 mL/min/kg, respectively, mean SE( P 5 .8), with ventilatory equivalents for C O 2 vs end-tidal P CO 2 , measured at the anaerobic threshold,of 0.9 0.1, 1.2 0.1, and 1.4 0.1 mm Hg, respectively ( P , .001); arterial oxygen content of 26 1, 21 2, and 16 1 mL/dL, respectively ( P , .001); diffusing capacity for carbon monoxide corrected for alveolar volume of 155% 4%, 150% 5%, and 120% 3% predicted, respectively( P , .001), with diffusing capacity for nitric oxide and carbon monoxide ratios of 4.7 0.1 at sea level decreased to 3.6 0.1, 3.7 0.1, and 3.9 0.1, respectively ( P , .05) and a maximal exercise mean pulmonary arterial pressure at 56 4, 42 3, and 31 2 mm Hg, respectively ( P , .001). CONCLUSIONS: The aerobic exercise capacity of patients with CMS is preserved in spite of severe pulmonary hypertension and relative hypoventilation, probably by a combination of increased oxygen carrying capacity of the blood and lung diffusion, the latter being predominantly due to an increased capillary blood volume.


Subject(s)
Altitude Sickness/physiopathology , Arterial Pressure/physiology , Exercise Tolerance/physiology , Pulmonary Diffusing Capacity/physiology , Altitude , Altitude Sickness/diagnosis , Chronic Disease , Echocardiography, Stress , Exercise Test , Humans , Peru , Prognosis , Travel
SELECTION OF CITATIONS
SEARCH DETAIL
...