Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Appl Physiol (1985) ; 130(6): 1848-1867, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33856258

ABSTRACT

Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Thirty-six adults (18 males, age: 26 ± 5 yr, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300 s in length and five UST time points (i.e., 30 s, 60 s, 120 s, 180 s, and 240 s) were extracted from the original 300-s recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA and two-tailed paired t tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency domains. No group differences were noted between all short-term and UST measures, for either time- (all P > 0.202) or frequency-domain metrics (all P > 0.086). A longer recording duration was associated with augmented validity and reliability, which was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60 s, 240 s, and 300 s, respectively. Future studies employing UST HRV metrics should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.NEW & NOTEWORTHY A one size fits all methodological approach to quantify HRV metrics appears to be inappropriate, where study design considerations need to be conducted upon a variable-by-variable basis. The present results found 60 s (heart rate), 240 s (time-domain parameters), and 300 s (relative frequency-domain parameters) were required to obtain accurate and reproducible metrics. The lower validity/reliability of the ultra-short-term metrics was attributable to measurement error and/or confounding from extraneous physiological influences (i.e., respiratory and hemodynamic variables).


Subject(s)
Electrocardiography , Respiratory Rate , Adult , Blood Pressure , Heart Rate , Humans , Male , Reproducibility of Results , Young Adult
2.
Physiol Meas ; 42(4)2021 05 11.
Article in English | MEDLINE | ID: mdl-33761474

ABSTRACT

Objective. Currently, a recording of 300 s is recommended to obtain accurate dynamic cerebral autoregulation estimates using transfer function analysis (TFA). Therefore, this investigation sought to explore the concurrent validity and the within- and between-day reliability of TFA estimates derived from shorter recording durations from squat-stand maneuvers.Approach. Retrospective analyses were performed on 70 young, recreationally active or endurance-trained participants (17 females; age: 26 ± 5 years, [range: 20-39 years]; body mass index: 24 ± 3 kg m-2). Participants performed 300 s of squat-stands at frequencies of 0.05 and 0.10 Hz, where shorter recordings of 60, 120, 180, and 240 s were extracted. Continuous transcranial Doppler ultrasound recordings were taken within the middle and posterior cerebral arteries. Coherence, phase, gain, and normalized gain metrics were derived. Bland-Altman plots with 95% limits of agreement (LOA), repeated measures ANOVA's, two-tailed paired t-tests, coefficient of variation, Cronbach's alpha, intraclass correlation coefficients, and linear regressions were conducted.Main results. When examining the concurrent validity across different recording durations, group differences were noted within coherence (F(4155) > 11.6,p < 0.001) but not phase (F(4155) < 0.27,p > 0.611), gain (F(4155) < 0.61,p > 0.440), or normalized gain (F(4155) < 0.85,p > 0.359) parameters. The Bland-Altman 95% LOA measuring the concurrent validity, trended to narrow as recording duration increased (60 s: < ±0.4, 120 s: < ±0.3, 180 s  < ±0.3, 240 s: < ±0.1). The validity of the 180 and 240 s recordings further increased when physiological covariates were included within regression models.Significance. Future studies examining autoregulation should seek to have participants perform 300 s of squat-stand maneuvers. However, valid and reliable TFA estimates can be drawn from 240 s or 180 s recordings if physiological covariates are controlled.


Subject(s)
Cerebrovascular Circulation , Ultrasonography, Doppler, Transcranial , Adult , Blood Flow Velocity , Blood Pressure , Female , Homeostasis , Humans , Reproducibility of Results , Retrospective Studies , Young Adult
3.
Brain Inj ; 35(2): 248-254, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33455457

ABSTRACT

Background: Near point of convergence (NPC) assesses the vergence ability of the visuo-oculomotor system; however, little is known regarding: the extent and duration exercise impacts NPC and the between- and within-day reliability of NPC metrics.Methods: An accommodative ruler with a miniature Snellen chart was placed upon the philtrum (upper lip). Participants (n=9) focused upon a 'V' sized 20/20, while the chart was moved at ~1-2 cm/s toward and away from the eyes (twice in each direction). Testing commenced at 8:00am with NPC measures being collected at baseline before three randomized conditions with serial follow-ups occurring at six post-condition timepoints (0-8 hours following). The conditions consisted of 25-minutes high-intensity intervals (10, one-minute intervals at ~85-90% heart-rate reserve), 45-minutes of moderate-intensity exercise (at ~50-60% heart-rate reserve), and a control condition (30-minutes quiet rest).Results: NPC was not impacted across any of the three conditions (all p > .59). Additionally, NPC measures between baseline conditions and across the control condition displayed very high levels of within-day and between-day reliability (coefficient of variation <3.8%).Conclusions: Future NPC measures using an accommodative ruler can be taken immediately following exercise and may be pertinent as a complementary tool in the future sideline screening of concussion.


Subject(s)
Brain Concussion , Strabismus , Benchmarking , Exercise , Humans , Reproducibility of Results
4.
Physiol Rep ; 9(2): e14695, 2021 01.
Article in English | MEDLINE | ID: mdl-33463899

ABSTRACT

PURPOSE: Studies examining neurovascular coupling (NVC) require participants to refrain from exercise for 12-24 hours. However, there is a paucity of empirical evidence for this restriction. The objectives for this study were to delineate the time-course recovery of NVC metrics following exercise and establish the NVC within- and between-day reliability. METHODS: Nine participants completed a complex visual search paradigm to assess NVC via transcranial Doppler ultrasound of the posterior cerebral artery blood velocity (PCA). Measurements were performed prior to and throughout the 8-hour recovery period following three randomized conditions: 45 minutes of moderate-intensity exercise (at 50% heart-rate reserve), 30 minutes high-intensity intervals (10, 1-minute intervals at 85% heart-rate reserve), and control (30 minutes quiet rest). In each condition, baseline measures were collected at 8:00am with serial follow-ups at hours zero, one, two, four, six, and eight. RESULTS: Area-under-the-curve and time-to-peak PCA velocity during the visual search were attenuated at hour zero following high-intensity intervals (all p < 0.05); however, these NVC metrics recovered at hour one (all p > 0.13). Conversely, baseline PCA velocity, peak PCA velocity, and the relative percent increase were not different following high-intensity intervals compared to baseline (all p > 0.26). No NVC metrics differed from baseline following both moderate exercise and control conditions (all p > 0.24). The majority of the NVC parameters demonstrated high levels of reliability (intraclass correlation coefficient: >0.90). CONCLUSION: Future NVC assessments can take place a minimum of one hour following exercise. Moreover, all metrics did not change across the control condition, therefore future studies using this methodology can reliably quantify NVC between 8:00am and 7:00 pm.


Subject(s)
Exercise/physiology , Heart Rate/physiology , Neurovascular Coupling/physiology , Adult , Blood Flow Velocity , Cerebrovascular Circulation , Female , Humans , Male , ROC Curve , Reproducibility of Results , Spatio-Temporal Analysis , Ultrasonography, Doppler, Transcranial/methods , Young Adult
5.
Physiol Rep ; 8(11): e14458, 2020 06.
Article in English | MEDLINE | ID: mdl-32537905

ABSTRACT

Presently, the literature describing the influence of diurnal variation on dynamic cerebral autoregulation (dCA) metrics is sparse. Additionally, there is little data with respect to dCA comparisons between anterior/posterior circulation beds and biological sexes using squat-stand maneuvers. Eight male and eight female participants (n = 16) performed 5 min of spontaneous upright rest and squat-stand maneuvers at 0.05 and 0.10 Hz across seven time points throughout the day. All testing sessions commenced at 8:00 a.m. each day and dCA parameters were quantified across the cardiac cycle (diastole, mean, and systole) using transcranial Doppler ultrasound to insonate cerebral blood velocity within the middle and posterior cerebral arteries (MCA, PCA). No cardiac cycle alternations were seen spontaneous (all p > .207) while a trend was noted in some driven (all p > .051) dCA metrics. Driven dCA produced much lower coefficient of variances (all <21%) compared with spontaneous (all <58%). Moreover, no sex differences were found within driven metrics (all p > .096). Between vessels, PCA absolute gain was reduced within all spontaneous and driven measures (all p < .014) whereas coherence, phase, and normalized gain were unchanged (all p > .099). There appears to be little influence of diurnal variation on dCA measures across the day (8:00 a.m. to 6:00 p.m.). Absolute gain was blunted in the PCA relative to the MCA and consistent with previous literature, driven methods demonstrated vastly improved reproducibility metrics compared to spontaneous methods. Finally, no dCA differences were found between biological sexes, demonstrating that males and females regulate in a harmonious manner, when females are tested within the early follicular phase of the menstrual cycle.


Subject(s)
Brain/blood supply , Brain/physiology , Circadian Rhythm , Exercise/physiology , Homeostasis , Adult , Cerebrovascular Circulation , Female , Humans , Male , Reproducibility of Results , Sex Characteristics , Young Adult
6.
Physiol Rep ; 8(11): e14467, 2020 06.
Article in English | MEDLINE | ID: mdl-32506845

ABSTRACT

A common inclusion criterion when assessing cerebrovascular (CVR) metrics is for individuals to abstain from exercise for 12-24 hr prior to data collections. While several studies have examined CVR during exercise, the literature describing CVR throughout post-exercise recovery is sparse. The current investigation examined CVR measurements in nine participants (seven male) before and for 8 hr following three conditions: 45-min moderate-continuous exercise (at ~50% heart-rate reserve), 25-min high-intensity intervals (ten, one-minute intervals at ~85% heart-rate reserve), and a control day (30-min quiet rest). The hypercapnic (40-60 mmHg) and hypocapnic (25-40 mmHg) slopes were assessed via a modified rebreathing technique and controlled stepwise hyperventilation, respectively. All testing was initiated at 8:00a.m. with transcranial Doppler ultrasound measurements to index cerebral blood velocity performed prior to the condition (pre) with serial follow-ups at zero, one, two, four, six, and eight hours within the middle and posterior cerebral artery (MCA, PCA). Absolute and relative MCA and PCA hypercapnic slopes were attenuated following high-intensity intervals at hours zero and one (all p < .02). No alterations were observed in either hypocapnic or hypercapnic slopes following the control or moderate-continuous exercise (all p > .13), aside from a reduced relative hypercapnic MCA slope at hours zero and one following moderate-continuous exercise (all p < .005). The current findings indicate the common inclusion criteria of a 12-24 hr time restriction on exercise can be reduced to two hours when performing CVR measures. Furthermore, the consistent nature of the CVR indices throughout the control day indicate reproducible testing sessions can be made between 8:00a.m. and 7:00p.m.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation/physiology , High-Intensity Interval Training , Respiration , Adult , Brain/physiology , Female , Heart Rate/physiology , Humans , Hypercapnia/physiopathology , Hypocapnia/physiopathology , Male , Ultrasonography, Doppler, Transcranial , Young Adult
7.
Appl Physiol Nutr Metab ; 45(10): 1156-1164, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32343909

ABSTRACT

Numerous studies have examined heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) variables during recovery both acutely (under 3 h) and long-term (24, 48, and 72 h) postexercise. However, there is little literature examining HRV and BRS measures between these timepoints. Spontaneous short-term HRV and cardiac BRS measures were collected in 9 participants before and at zero, 1, 2, 4, 6, and 8 h after 3 separate conditions: moderate-intensity continuous exercise (MICE; 45 min at 50% heart rate reserve), high-intensity interval exercise (HIIE; 25 min including ten 1-min intervals at 85% heart rate reserve), and control (30 min quiet rest). HRV measures in the time domain were only affected immediately following HIIE and MICE at hour zero (all p < 0.043), whereas frequency-domain metrics were unaltered (all p > 0.102). These measures were highly consistent across the control day (all p > 0.420). Cardiac BRS was assessed via low-frequency (LF) gain, and revealed reductions following HIIE at hour zero (p < 0.012). Cardiac BRS LF gain remained consistent following MICE and control interventions (all p > 0.280). The common practice of waiting 12 to 24 h is overly conservative as the current findings demonstrate measures return to baseline at ∼60 min after exercise. Moreover, these metrics demonstrated high levels of within- and between-day reliability. Novelty Previously a 12-h minimum restriction from exercise was required before participation in HRV/BRS studies. Recovery from moderate-intensity exercise for HRV and BRS metrics was <60 min; whereas, high-intensity intervals led to alterations for approximately 60 min. Spontaneous HRV and cardiac BRS demonstrated high levels of within-day reproducibility.


Subject(s)
Baroreflex/physiology , Heart Rate/physiology , High-Intensity Interval Training/methods , Pressoreceptors/physiology , Adult , Cohort Studies , Cross-Over Studies , Female , Humans , Male , Reproducibility of Results , Time
8.
Physiol Rep ; 8(5): e14367, 2020 03.
Article in English | MEDLINE | ID: mdl-32163235

ABSTRACT

Current protocols examining cerebral autoregulation (CA) parameters require participants to refrain from exercise for 12-24 hr, however there is sparse objective evidence examining the recovery trajectory of these measures following exercise across the cardiac cycle (diastole, mean, and systole). Therefore, this study sought to determine the duration acute exercise impacts CA and the within-day reproducibility of these measures. Nine participants performed squat-stand maneuvers at 0.05 and 0.10 Hz at baseline before three interventions: 45-min moderate-continuous exercise (at 50% heart-rate reserve), 30-min high-intensity intervals (ten, 1-min at 85% heart-rate reserve), and a control day (30-min quiet rest). Squat-stands were repeated at hours zero, one, two, four, six, and eight after each condition. Transcranial doppler ultrasound of the middle cerebral artery (MCA) and the posterior cerebral artery (PCA) was used to characterize CA parameters across the cardiac cycle. At baseline, the systolic CA parameters were different than mean and diastolic components (ps < 0.015), however following both exercise protocols in both frequencies this disappeared until hour four within the MCA (ps > 0.079). In the PCA, phase values were affected only following high-intensity intervals until hour four (ps > 0.055). Normalized gain in all cardiac cycle domains remained different following both exercise protocols (ps < 0.005) and across the control day (p < .050). All systolic differences returned by hour six across all measures (ps < 0.034). Future CA studies may use squat-stand maneuvers to assess the cerebral pressure-flow relationship 6 hr after exercise. Finally, CA measures under this paradigm appear to have negligible within-day variation, allowing for reproducible interpretations to be drawn.


Subject(s)
Brain/blood supply , Exercise/physiology , Homeostasis , Middle Cerebral Artery/physiology , Myocardial Contraction/physiology , Posterior Cerebral Artery/physiology , Adult , Blood Flow Velocity , Cerebrovascular Circulation/physiology , Female , Heart Rate , Humans , Male , Ultrasonography, Doppler, Transcranial , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...