Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Br J Cancer ; 129(6): 965-973, 2023 10.
Article in English | MEDLINE | ID: mdl-37537253

ABSTRACT

BACKGROUND: This multicentre, open-label, Phase Ib/II trial evaluated the insulin-like growth factor (IGF) 1/2 neutralising antibody xentuzumab plus enzalutamide in metastatic castrate-resistant prostate cancer (mCRPC). METHODS: The trial included Phase Ib escalation and expansion parts and a randomised Phase II part versus enzalutamide alone. Primary endpoints in the Phase Ib escalation, Phase Ib expansion and Phase II parts were maximum tolerated dose (MTD), prostate-specific antigen response and investigator-assessed progression-free survival (PFS), respectively. Patients in the Phase Ib escalation and Phase II parts had progressed on/after docetaxel/abiraterone. RESULTS: In the Phase Ib escalation (n = 10), no dose-limiting toxicities were reported, and xentuzumab 1000 mg weekly plus enzalutamide 160 mg daily (Xe1000 + En160) was defined as the MTD and recommended Phase 2 dose. In the Phase Ib expansion (n = 24), median PFS was 8.2 months, and one patient had a confirmed, long-term response. In Phase II (n = 86), median PFS for the Xe1000 + En160 and En160 arms was 7.4 and 6.2 months, respectively. Subgroup analysis suggested trends towards benefit with Xe1000 + En160 in patients whose tumours had high levels of IGF1 mRNA or PTEN protein. Overall, the combination was well tolerated. CONCLUSIONS: Xentuzumab plus enzalutamide was tolerable but lacked antitumour activity in unselected patients with mCRPC. CLINICAL TRIAL REGISTRATION: EudraCT number 2013-004011-41.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Treatment Outcome , Antibodies, Neutralizing , Nitriles/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
2.
Cell Oncol (Dordr) ; 46(2): 391-407, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36539575

ABSTRACT

PURPOSE: Despite recent advances, approximately 50% of patient with metastatic melanoma eventually succumb to the disease. Patients with melanomas harboring a BRAF mutation (BRAFMut) have a worse prognosis than those with wildtype (BRAFWT) tumors. Unexpectedly, interim AVAST-M Phase III trial data reported benefit from adjuvant anti-VEGF bevacizumab only in the BRAFMut group. We sought to find mechanisms underpinning this sensitivity. METHODS: We investigated this finding in vitro and in vivo using melanoma cell lines and clones generated by BRAFV600E knock-in on a BRAFWT background. RESULTS: Compared with BRAFWT cells, isogenic BRAFV600E clones secreted more VEGF and exhibited accelerated growth rates as spheroids and xenografts, which were more vascular and proliferative. Recapitulating AVAST-M findings, bevacizumab affected only BRAFV600E xenografts, inducing significant tumor growth delay, reduced vascularity and increased necrosis. We identified 814 differentially expressed genes in isogenic BRAFV600E/BRAFWT clones. Of 61 genes concordantly deregulated in clinical melanomas ROR2 was one of the most upregulated by BRAFV600E. ROR2 was shown to be RAF-MEK regulated in BRAFV600E cells and its depletion suppressed VEGF secretion down to BRAFWT levels. The ROR2 ligand WNT5A was also overexpressed in BRAFMut melanomas, and in ROR2-overexpressing BRAFV600E cells MEK inhibition downregulated WNT5A and VEGF secretion. CONCLUSIONS: These data implicate WNT5A-ROR2 in VEGF secretion, vascularity, adverse outcomes and bevacizumab sensitivity of BRAFMut melanomas, suggesting that this axis has potential therapeutic relevance.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Humans , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Cell Line, Tumor , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
3.
Cancer Metastasis Rev ; 41(3): 491-515, 2022 09.
Article in English | MEDLINE | ID: mdl-36038791

ABSTRACT

Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/metabolism , Neovascularization, Pathologic/pathology , Obesity/complications , Signal Transduction
4.
Oncogene ; 41(4): 476-488, 2022 01.
Article in English | MEDLINE | ID: mdl-34773074

ABSTRACT

We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.


Subject(s)
Checkpoint Kinase 1/antagonists & inhibitors , High-Throughput Screening Assays/methods , Receptor, IGF Type 1/metabolism , Cell Line, Tumor , Humans , Transfection
5.
Discov Oncol ; 12(1): 13, 2021.
Article in English | MEDLINE | ID: mdl-33969359

ABSTRACT

Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane ß-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely understood role upon nuclear import as a transcriptional regulator. Previous characterisation of nuclear IGF-1R focused on IGF-1Rß. Here, we aimed to clarify the source of nuclear IGF-1R and investigate whether α-subunits contribute to nuclear IGF-1R function. Using prostate cancer cell lines DU145 and 22Rv1 we detected nuclear α- and ß-subunits, with increase in nuclear signal upon IGF-treatment and reduction in response to IGF-1R inhibitor BMS-754807. Following biotinylation of cell surface proteins, biotinylated α- and ß-subunits were detected in nuclear extracts of both cell lines. Furthermore, α- and ß-subunits reciprocally co-precipitated from nuclear extract. Finally, we detected recruitment of both subunits to regulatory regions of chromatin, including the promoter of the oncogene JUN, that we previously identified in ChIP-seq as sites of IGF-1Rß enrichment. These data confirm the cell surface origin of nuclear IGF-1R, suggest the presence of nuclear αß complexes and reveal that both IGF-1Rα- and ß-subunits contribute to pro-tumorigenic functions of nuclear IGF-1R. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12672-021-00407-8.

6.
Cancer Res ; 81(8): 2128-2141, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33509941

ABSTRACT

Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.


Subject(s)
DNA Breaks, Double-Stranded , DNA Damage , DNA Replication , Receptor, IGF Type 1/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA Repair , Deoxyribonucleosides/metabolism , Down-Regulation , Fibroblasts , Heterografts , Histones/metabolism , Humans , MAP Kinase Signaling System , MCF-7 Cells , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Orphan Nuclear Receptors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Receptor, IGF Type 1/metabolism , S Phase Cell Cycle Checkpoints , Spheroids, Cellular
7.
Br J Cancer ; 122(5): 624-629, 2020 03.
Article in English | MEDLINE | ID: mdl-31857716

ABSTRACT

High-grade glioma (HGG) is highly resistant to therapy, prompting us to investigate the contribution of insulin-like growth factor receptor (IGF-1R), linked with radioresistance in other cancers. IGF-1R immunohistochemistry in 305 adult HGG (aHGG) and 103 paediatric/young adult HGG (pHGG) cases revealed significant association with adverse survival in pHGG, with median survival of 13.5 vs 29 months for pHGGs with moderate/strong vs negative/weak IGF-1R (p = 0.011). Secondly, we tested IGF-1R inhibitor BMS-754807 in HGG cells, finding minimal radiosensitisation of 2/3 aHGG cell lines (dose enhancement ratios DERs < 1.60 at 2-8 Gy), and greater radiosensitisation of 2/2 pHGG cell lines (DERs ≤ 4.16). BMS-754807 did not influence radiation-induced apoptosis but perturbed the DNA damage response with altered induction/resolution of γH2AX, 53BP1 and RAD51 foci. These data indicate that IGF-1R promotes radioresistance in pHGG, potentially contributing to the association of IGF-1R with adverse outcome and suggesting IGF-1R as a candidate treatment target in pHGG.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Glioma/metabolism , Glioma/radiotherapy , Receptor, IGF Type 1/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Glioma/genetics , Glioma/pathology , Humans , Immunohistochemistry , Neoplasm Grading , Pyrazoles/pharmacology , Radiation Tolerance/drug effects , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Signal Transduction/drug effects , Tissue Array Analysis , Triazines/pharmacology
8.
Clin Otolaryngol ; 44(6): 1026-1036, 2019 11.
Article in English | MEDLINE | ID: mdl-31536667

ABSTRACT

OBJECTIVES: Patients failing radiotherapy for laryngeal squamous cell carcinoma (LSCC) often require salvage total laryngectomy which has major functional consequences, highlighting a need for biomarkers of radiotherapy resistance. In other tumour types, radioresistance has been linked to epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R). Here, we evaluated IGF-1R and EGFR as predictors and mediators of LSCC radioresistance. DESIGN: We compared IGF-1R and EGFR immunohistochemical scores in patients with LSCC achieving long-term remission post-radiotherapy (n = 23), patients treated with primary laryngectomy (n = 22) or salvage laryngectomy following radiotherapy recurrence (n = 18). To model radioresistance in vitro, two LSCC cell lines underwent clinically relevant irradiation to 55 Gy in 2.75 Gy fractions. RESULTS: Type 1 insulin-like growth factor receptor expression was higher in pre-treatment biopsies of radiotherapy failures compared with those in long-term remission and was upregulated post-radiotherapy. Patients undergoing primary laryngectomy had more advanced T/N stage and greater tumour IGF-1R content than those achieving long-term remission. Pre-treatment EGFR did not associate with radiotherapy outcomes but showed a trend to upregulation post-irradiation. In vitro, radiosensitivity was enhanced by inhibition of EGFR but not IGF. Repeated irradiation upregulated IGF-1R in BICR18 and SQ20B cells and EGFR in SQ20B, and enhanced SQ20B radioresistance. Repeatedly irradiated SQ20B_55 cells were not radiosensitised by inhibition of IGF and/or EGFR, but IGF-1R:EGFR co-inhibition suppressed baseline cell survival more effectively than blockade of either pathway alone, and more effectively than in parental cells. CONCLUSIONS: Radiation upregulates IGF-1R and may enhance IGF/EGFR dependence, suggesting that IGF/EGFR blockade may have activity in LSCCs that recur post-radiotherapy.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , Epidermal Growth Factor/metabolism , Laryngeal Neoplasms/radiotherapy , Receptor, IGF Type 1/metabolism , Signal Transduction/physiology , Somatomedins/metabolism , Aged , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cohort Studies , Female , Humans , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Laryngectomy , Male , Middle Aged , Predictive Value of Tests , Radiation Tolerance
9.
Cells ; 8(8)2019 08 14.
Article in English | MEDLINE | ID: mdl-31416218

ABSTRACT

The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.


Subject(s)
Endocrine System Diseases/drug therapy , Molecular Targeted Therapy , Neoplasms/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Skin Diseases/drug therapy , Somatomedins/antagonists & inhibitors , Aging/metabolism , Animals , Endocrine System Diseases/metabolism , Humans , Mice , Neoplasms/metabolism , Rats , Signal Transduction/drug effects , Skin Diseases/metabolism
10.
Clin Cancer Res ; 25(12): 3479-3485, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30745299

ABSTRACT

Bone metastases are a frequent complication of cancer that are associated with considerable morbidity. Current treatments may temporarily palliate the symptoms of bone metastases but often fail to delay their progression. Bones provide a permissive environment because they are characterized by dynamic turnover, secreting factors required for bone maintenance but also stimulating the establishment and growth of metastases. Insulin-like growth factors (IGF) are the most abundant growth factors in bone and are required for normal skeletal development and function. Via activation of the IGF-1 receptors (IGF-1R) and variant insulin receptors, IGFs promote cancer progression, aggressiveness, and treatment resistance. Of specific relevance to bone biology, IGFs contribute to the homing, dormancy, colonization, and expansion of bone metastases. Furthermore, preclinical evidence suggests that tumor cells can be primed to metastasize to bone by a high IGF-1 environment in the primary tumor, suggesting that bone metastases may reflect IGF dependency. Therapeutic targeting of the IGF axis may therefore provide an effective method for treating bone metastases. Indeed, anti-IGF-1R antibodies, IGF-1R tyrosine kinase inhibitors, and anti-IGF-1/2 antibodies have demonstrated antitumor activity in preclinical models of prostate and breast cancer metastases, either alone or in combination with other agents. Several studies suggest that such treatments can inhibit bone metastases without affecting growth of the primary tumor. Although previous trials of anti-IGF-1R drugs have generated negative results in unselected patients, these considerations suggest that future clinical trials of IGF-targeted agents may be warranted in patients with bone metastases.


Subject(s)
Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Neoplasms/pathology , Receptor, IGF Type 1/metabolism , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bone Remodeling , Disease Models, Animal , Humans , Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Receptor, IGF Type 1/antagonists & inhibitors
11.
Cancer Res ; 78(13): 3497-3509, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29735545

ABSTRACT

Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Intracellular Signaling Peptides and Proteins/genetics , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-jun/genetics , RNA Polymerase II/metabolism , Receptors, Somatomedin/metabolism , Aged , Cell Line, Tumor , Cell Movement/genetics , Cell Nucleus/pathology , Cell Survival/genetics , Chromatin/genetics , Chromatin/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Neoplasm Staging , Promoter Regions, Genetic/genetics , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Proto-Oncogene Proteins c-jun/metabolism , Receptor, IGF Type 1 , Signal Transduction/genetics , Transcription Initiation Site , Up-Regulation
12.
PLoS One ; 13(2): e0191890, 2018.
Article in English | MEDLINE | ID: mdl-29389967

ABSTRACT

The outlook for patients with advanced renal cell cancer (RCC) has been improved by targeted agents including inhibitors of the PI3 kinase (PI3K)-AKT-mTOR axis, although treatment resistance is a major problem. Here, we aimed to understand how RCC cells acquire resistance to PI3K-mTOR inhibition. We used the RCC4 cell line to generate a model of in vitro resistance by continuous culture in PI3K-mTOR kinase inhibitor NVP-BEZ235 (BEZ235, Dactolisib). Resistant cells were cross-resistant to mTOR inhibitor AZD2014. Sensitivity was regained after 4 months drug withdrawal, and resistance was partially suppressed by HDAC inhibition, supporting an epigenetic mechanism. BEZ235-resistant cells up-regulated and/or activated numerous proteins including MET, ABL, Notch, IGF-1R, INSR and MEK/ERK. However, resistance was not reversed by inhibiting or depleting these pathways, suggesting that many induced changes were passengers not drivers of resistance. BEZ235 blocked phosphorylation of mTOR targets S6 and 4E-BP1 in parental cells, but 4E-BP1 remained phosphorylated in resistant cells, suggesting BEZ235-refractory mTORC1 activity. Consistent with this, resistant cells over-expressed mTORC1 component RAPTOR at the mRNA and protein level. Furthermore, BEZ235 resistance was suppressed by RAPTOR depletion, or allosteric mTORC1 inhibitor rapamycin. These data reveal that RAPTOR up-regulation contributes to PI3K-mTOR inhibitor resistance, and suggest that RAPTOR expression should be included in the pharmacodynamic assessment of mTOR kinase inhibitor trials.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Regulatory-Associated Protein of mTOR/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Up-Regulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Histone Deacetylase Inhibitors/pharmacology , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Morpholines/therapeutic use , Pyrimidines , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction/drug effects
13.
Br J Cancer ; 117(11): 1600-1606, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28972962

ABSTRACT

BACKGROUND: Activated type 1 insulin-like growth factor receptors (IGF-1Rs) undergo internalisation and nuclear translocation, promoting cell survival. We previously reported that IGF-1R inhibition delays DNA damage repair, sensitising prostate cancer cells to ionising radiation. Here we tested the clinical relevance of these findings. METHODS: We assessed associations between IGF-1R and clinical outcomes by immunohistochemistry in diagnostic biopsies of 136 men treated with 55-70 Gy external beam radiotherapy for prostate cancer, comparing results with publicly available transcriptional data in surgically treated patients. RESULTS: Following radiotherapy, overall recurrence-free survival was shorter in patients whose tumours contained high total, cytoplasmic and internalised (nuclear/cytoplasmic) IGF-1R. High total IGF-1R associated with high primary Gleason grade and risk of metastasis, and cytoplasmic and internalised IGF-1R with biochemical recurrence, which includes patients experiencing local recurrence within the radiation field indicating radioresistance. In multivariate analysis, cytoplasmic, internalised and total IGF-1R were independently associated with risk of overall recurrence, and cytoplasmic IGF-1R was an independent predictor of biochemical recurrence post radiotherapy. Insulin-like growth factor receptors expression did not associate with biochemical recurrence after radical prostatectomy. CONCLUSIONS: These data reveal increased risk of post-radiotherapy recurrence in men whose prostate cancers contain high levels of total or cytoplasmic IGF-1R.


Subject(s)
Prostatic Neoplasms/radiotherapy , Receptor, IGF Type 1/physiology , Aged , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Receptor, IGF Type 1/analysis
14.
Target Oncol ; 12(5): 571-597, 2017 10.
Article in English | MEDLINE | ID: mdl-28815409

ABSTRACT

Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Neoplasms/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Humans
15.
Org Biomol Chem ; 15(25): 5373-5379, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28617490

ABSTRACT

An investigation of the formation of fused- and spiro-ß-lactone annulate to γ-lactams has shown that the fused systems are formed preferentially, under standard conditions, but that spiro systems are accessible only when the formation of the fused system is blocked and require careful optimisation of reaction conditions. These systems display both weak antibacterial activity and proteasome inhibition.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lactams/pharmacology , Lactones/pharmacology , Proteasome Inhibitors/pharmacology , Spiro Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Escherichia coli/drug effects , Humans , Lactams/chemistry , Lactones/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Spiro Compounds/chemistry , Staphylococcus aureus/drug effects
16.
Front Oncol ; 6: 98, 2016.
Article in English | MEDLINE | ID: mdl-27200287

ABSTRACT

Chordomas are rare primary malignant bone tumors arising from embryonal notochord remnants of the axial skeleton. Chordomas commonly recur following surgery and radiotherapy, and there is no effective systemic therapy. Previous studies implicated receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R), in chordoma biology. We report an adult female patient who presented in 2003 with spinal chordoma, treated with surgery and radiotherapy. She underwent further surgery for recurrent chordoma in 2008, with subsequent progression in pelvic deposits. In June 2009, she was recruited onto the Phase I OSI-906-103 trial of EGFR inhibitor erlotinib with linsitinib, a novel inhibitor of IGF-1R/insulin receptor (INSR). Treatment with 100 mg QD erlotinib and 50 mg QD linsitinib was well-tolerated, and after 18 months a partial response was achieved by RECIST criteria. From 43 months, a protocol modification allowed intra-patient linsitinib dose escalation to 50 mg BID. The patient remained stable on trial treatment for a total of 5 years, discontinuing treatment in August 2014. She subsequently experienced further disease progression for which she underwent pelvic surgery in April 2015. Analysis of DNA extracted from 2008 (pre-trial) tissue showed that the tumor harbored wild-type EGFR, and a PIK3CA mutation was detected in plasma, but not tumor DNA. The 2015 (post-trial) tumor harbored a mutation of uncertain significance in ATM, with no detectable mutations in other components of a 50 gene panel, including EGFR, PIK3CA, and TP53. By immunohistochemistry, the tumor was positive for brachyury, the molecular hallmark of chordoma, and showed weak-moderate membrane and cytoplasmic EGFR. IGF-1R was detected in the plasma membrane and cytoplasm and was expressed more strongly in recurrent tumor than the primary. We also noted heterogeneous nuclear IGF-1R, which has been linked with sensitivity to IGF-1R inhibition. Similar variation in IGF-1R expression and subcellular localization was noted in 15 further cases of chordoma. In summary, this exceptionally durable response suggests that there may be merit in evaluating combined IGF-1R/INSR and EGFR inhibition in patients with chordomas that recur following failure of local treatment.

17.
Clin Cancer Res ; 22(12): 2897-907, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26831715

ABSTRACT

PURPOSE: Cross-talk between type I IGF receptor (IGF1R), insulin receptor (INSR), and epidermal growth factor receptor (EGFR) mediates resistance to individual receptor blockade. This study aimed to determine the MTD, safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of linsitinib, a potent oral IGF1R/INSR inhibitor, with EGFR inhibitor erlotinib. EXPERIMENTAL DESIGN: This open-label, dose-escalation study investigated linsitinib schedules S1: once daily intermittent (days 1-3 weekly); S2, once daily continuous; S3, twice-daily continuous; each with erlotinib 100-150 mg once daily; and a non-small cell lung cancer (NSCLC) expansion cohort. RESULTS: Ninety-five patients were enrolled (S1, 44; S2, 24; S3, 12; expansion cohort, 15) and 91 treated. Seven experienced dose-limiting toxicities: QTc prolongation (3), abnormal liver function (2), hyperglycemia (1), and anorexia (1). Common adverse events included drug eruption (84%), diarrhea (73%), fatigue (68%), nausea (58%), vomiting (40%). MTDs for linsitinib/erlotinib were 450/150 mg (S1), 400/100 mg (S2). On the basis of prior monotherapy data, S3 dosing at 150 mg twice daily/150 mg once daily was the recommended phase II dose for the expansion cohort. There was no evidence of drug-drug interaction. Pharmacodynamic data showed IGF-1 elevation and reduced IGF1R/INSR phosphorylation, suggesting pathway inhibition. Across schedules, 5/75 (7%) evaluable patients experienced partial responses: spinal chordoma (268+ weeks), rectal cancer (36 weeks), three NSCLCs including 2 adenocarcinomas (16, 72 weeks), 1 squamous wild-type EGFR NSCLC (36 weeks). Disease control (CR+PR+SD) occurred in 38 of 75 (51%), and 28 of 91 (31%) patients were on study >12 weeks. CONCLUSIONS: The linsitinib/erlotinib combination was tolerable with preliminary evidence of activity, including durable responses in cases unlikely to respond to erlotinib monotherapy. Clin Cancer Res; 22(12); 2897-907. ©2016 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Erlotinib Hydrochloride/therapeutic use , Imidazoles/therapeutic use , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Adult , Aged , Aged, 80 and over , Antigens, CD , Antineoplastic Agents/adverse effects , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/adverse effects , Erlotinib Hydrochloride/pharmacokinetics , Female , Humans , Imidazoles/adverse effects , Imidazoles/pharmacokinetics , Male , Maximum Tolerated Dose , Middle Aged , Protein Kinase Inhibitors/adverse effects , Pyrazines/adverse effects , Pyrazines/pharmacokinetics , Receptor, IGF Type 1 , Receptor, Insulin/antagonists & inhibitors , Receptors, Somatomedin/antagonists & inhibitors , Young Adult
18.
Cancer Cell ; 28(5): 557-568, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26602815

ABSTRACT

Histone H3K36 trimethylation (H3K36me3) is frequently lost in multiple cancer types, identifying it as an important therapeutic target. Here we identify a synthetic lethal interaction in which H3K36me3-deficient cancers are acutely sensitive to WEE1 inhibition. We show that RRM2, a ribonucleotide reductase subunit, is the target of this synthetic lethal interaction. RRM2 is regulated by two pathways here: first, H3K36me3 facilitates RRM2 expression through transcription initiation factor recruitment; second, WEE1 inhibition degrades RRM2 through untimely CDK activation. Therefore, WEE1 inhibition in H3K36me3-deficient cells results in RRM2 reduction, critical dNTP depletion, S-phase arrest, and apoptosis. Accordingly, this synthetic lethality is suppressed by increasing RRM2 expression or inhibiting RRM2 degradation. Finally, we demonstrate that WEE1 inhibitor AZD1775 regresses H3K36me3-deficient tumor xenografts.


Subject(s)
Cell Cycle Proteins/metabolism , Histones/metabolism , Neoplasms/metabolism , Nuclear Proteins/metabolism , Nucleotides/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , Lysine/genetics , Lysine/metabolism , Methylation/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Sequence Data , Neoplasms/genetics , Neoplasms/prevention & control , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nucleotides/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Xenograft Model Antitumor Assays
19.
Oncotarget ; 6(37): 39877-90, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26497996

ABSTRACT

Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Melanoma/drug therapy , Receptor, IGF Type 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , DNA Breaks, Double-Stranded/drug effects , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Administration Schedule , Drug Resistance, Neoplasm/drug effects , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacology , Melanoma/genetics , Melanoma/metabolism , Mice, Inbred BALB C , Mice, Nude , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrazines/administration & dosage , Pyrazines/pharmacology , Receptor, IGF Type 1/metabolism , Survival Analysis , Temozolomide , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Carcinogenesis ; 36(6): 648-55, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25896444

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) are treated with surgery, radiotherapy and cisplatin-based chemotherapy, but survival from locally-advanced disease remains poor, particularly in patients whose tumors are negative for Human papillomavirus (HPV). Type 1 IGF receptor (IGF-1R) is known to promote tumorigenesis and resistance to cancer therapeutics. Here, we assessed IGF-1R immunohistochemistry on tissue microarrays containing 852 cores from 346 HNSCC patients with primary tumors in the oropharynx (n = 231), larynx (85), hypopharynx (28), oral cavity (2). Of these, 236 (68%) were HPV-negative, 110 (32%) positive. IGF-1R was detected in the cell membrane of 36% and cytoplasm of 92% of HNSCCs; in 64 cases with matched normal tonsillar epithelium, IGF-1R was overexpressed in the HNSCCs (P < 0.001). Overall survival (OS) and disease-specific survival (DSS) were reduced in patients whose tumors contained high membrane IGF-1R [OS: hazard ratio (HR) = 1.63, P = 0.006; DSS: HR = 1.63, P = 0.016], cytoplasmic IGF-1R (OS: HR = 1.58, P = 0.009; DSS: HR = 1.58, P = 0.024) and total IGF-1R (OS: HR = 2.02, P < 0.001; DSS: HR = 2.2, P < 0.001). High tumor IGF-1R showed significant association with high-tumor T-stage (P < 0.001) and HPV-negativity (P < 0.001), and was associated with shorter OS when considering patients with HPV-positive (P = 0.01) and negative (P = 0.006) tumors separately. IGF-1R was independently associated with survival in multivariate analysis including HPV, but not when lymphovascular invasion, perineural spread and T-stage were included. Of these factors, only IGF-1R can be manipulated; the association of IGF-1R with aggressive disease supports experimental incorporation of anti-IGF-1R agents into multimodality treatment programs for HPV-negative and high IGF-1R HPV-positive HNSCC.


Subject(s)
Carcinoma, Squamous Cell/mortality , Head and Neck Neoplasms/mortality , Papillomavirus Infections/complications , Receptor, IGF Type 1/biosynthesis , Adult , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , Cell Transformation, Neoplastic/genetics , Combined Modality Therapy , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/virology , Humans , Male , Middle Aged , Neoplasm Staging , Papillomaviridae , Squamous Cell Carcinoma of Head and Neck , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL