Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 199: 108169, 2020 10.
Article in English | MEDLINE | ID: mdl-32758489

ABSTRACT

Accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE) is one of the main events involved in age-related macular degeneration and its increase together with RPE dysfunction, blood retinal barrier disruption and photoreceptors death progressively leads to blindness. Lipofuscin is the main autofluorescent (AF) component of the retina and therapies to counteract its deposition are a main goal to be achieved, since effective treatments have not yet been identified. Here, we first investigated the spatio-temporal pattern of AF deposits accumulation in the light-damage model of age-related macular degeneration. Afterward, we tested the ability of cerium oxide nanoparticles, a well known anti-oxidant agent, to counteract AF granules accumulation. The treatment was performed both before and after the induction of the degeneration. AF granules were quantified by confocal microscopy on whole mounted retinas. We demonstrated that the acute light-damage increases the accumulation of AF deposits in the hot spot retina in terms of number of granules and percentage of occupied area, with a peak 7 days after the exposure. Remarkably, cerium oxide nanoparticles showed a strong efficacy in preventing the formation of AF deposits when they were injected 3 days before light exposure. Moreover, when the treatment was performed 7 days after light exposure, nanoceria activity was found to be effective also in reducing the amount of the AF granules still deposited up to 60 days. These important results represent the very first evidence about the ability of cerium oxide nanoparticles to counteract AF deposits accumulation in retinal degeneration, laying the foundations for the development of a new therapy possibly targeting lipofuscin in AMD.


Subject(s)
Cerium/pharmacology , Lipofuscin/metabolism , Macular Degeneration/drug therapy , Retinal Pigment Epithelium/pathology , Animals , Disease Models, Animal , Light/adverse effects , Macular Degeneration/etiology , Macular Degeneration/metabolism , Microscopy, Confocal , Nanoparticles , Rats , Rats, Sprague-Dawley , Retinal Pigment Epithelium/metabolism
2.
Sci Rep ; 10(1): 6376, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286488

ABSTRACT

The light damage (LD) model was mainly used to study some of the main aspects of age related macular degeneration (AMD), such as oxidative stress and photoreceptor death. Several protocols of light-induced retinal degeneration exist. Acute light damage is characterized by a brief exposure (24 hours) to high intensity light (1000 lux) and leads to focal degeneration of the retina which progresses over time. To date there are not experimental data that relate this model to neovascular events. Therefore, the purpose of this study was to characterize the retina after an acute light damage to assess whether the vascularization was affected. Functional, molecular and morphological investigations were carried out. The electroretinographic response was assessed at all recovery times (7, 60, 120 days after LD). Starting from 7 days after light damage there was a significant decrease in the functional response, which remained low up to 120 days of recovery. At 7 days after light exposure, neo-vessels invaded the photoreceptor layer and retinal neovascularization occurred. Remarkably, neoangiogenesis was associated to the up-regulation of VEGF, bFGF and their respective receptors (VEGFR2 and FGFR1) with the progression of degeneration. These important results indicate that a brief exposure to bright light induces the up-regulation of pro-angiogenic pathways with subsequent neovascularization.


Subject(s)
Macular Degeneration/metabolism , Neovascularization, Pathologic/metabolism , Radiation Injuries, Experimental/metabolism , Retina , Animals , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/radiation effects , Rats, Sprague-Dawley , Retina/injuries , Retina/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
3.
Exp Eye Res ; 188: 107797, 2019 11.
Article in English | MEDLINE | ID: mdl-31520599

ABSTRACT

The use of nanomaterials is an emerging therapeutic approach for the treatment of several pathologies. Cerium oxide nanoparticles have been studied for biomedical application, including neurodegenerative disorders, such as age-related macular degeneration in several animal models. The light damage model is characterised by oxidative stress upregulation followed by photoreceptor death and microglia activation in the outer retina. For this reason, the light damage model mimics some aspects involved in human age-related macular degeneration pathogenesis. In this review, we focus on the neuroprotective effects on retinal function and microglia activation in the light damage model, considering the administration of the nanoparticles both before and after the injury. The electrical responses of the retina and the microglia number and morphology are clearly modulated by the treatment, supporting the beneficial effects of cerium oxide nanoparticles to counteract the degeneration processes in the retina.


Subject(s)
Cerium/therapeutic use , Light/adverse effects , Microglia/metabolism , Neuroprotective Agents/therapeutic use , Radiation Injuries/prevention & control , Retina/radiation effects , Retinal Degeneration/prevention & control , Retinal Ganglion Cells/metabolism , Animals , Mice , Oxidative Stress , Radiation Injuries/etiology , Radiation Injuries/metabolism , Rats , Retinal Degeneration/etiology , Retinal Degeneration/metabolism
4.
Exp Eye Res ; 182: 30-38, 2019 05.
Article in English | MEDLINE | ID: mdl-30867118

ABSTRACT

Cerium Oxide nanoparticles are antioxidant agents with autoregenerative radical scavenging activities, effective in preventing degeneration of photoreceptors of an albino rat when intravitreally injected prior to exposure to high intensity light. In this study, we performed a post injury administration of nanoceria and a long term analysis of their neuroprotective properties in order to better simulate the therapeutic treatment as it is carried out on patients with age related macular degeneration, and while photoreceptor degeneration is ongoing. We also injected nanoceria labelled with fluorescein isothiocianate in order to analyze their persistence after a single administration in a damaged retina and to investigate how long they both maintain their neuroprotective properties and where they localize in the retina. We demonstrated that after a single intravitreal injection, nanoceria remained in the retina for a long time and retained their neuroprotective properties. All these data form excellent bases for future clinical applications.


Subject(s)
Cerium/administration & dosage , Macular Degeneration/drug therapy , Neuroprotection/drug effects , Oxidative Stress/drug effects , Radiation Injuries, Experimental , Retina/drug effects , Animals , Electroretinography , Intravitreal Injections , Light/adverse effects , Macular Degeneration/etiology , Macular Degeneration/metabolism , Nanoparticles/administration & dosage , Rats , Rats, Sprague-Dawley , Retina/pathology , Retina/radiation effects
5.
Article in English | MEDLINE | ID: mdl-22852021

ABSTRACT

Objectives. In a previous randomized clinical trial (Falsini et al. (2010)), it was shown that short-term Saffron supplementation improves retinal flicker sensitivity in early age-related macular degeneration (AMD). The aim of this study was to evaluate whether the observed functional benefits from Saffron supplementation may extend over a longer follow-up duration. Design. Longitudinal, interventional open-label study. Setting. Outpatient ophthalmology setting. Participants. Twenty-nine early AMD patients (age range: 55-85 years) with a baseline visual acuity >0.3. Intervention. Saffron oral supplementation (20 mg/day) over an average period of treatment of 14 (±2) months. Measurements. Clinical examination and focal-electroretinogram-(fERG-) derived macular (18°) flicker sensitivity estimate (Falsini et al. (2010)) every three months over a followup of 14 (±2) months. Retinal sensitivity, the reciprocal value of the estimated fERG amplitude threshold, was the main outcome measure. Results. After three months of supplementation, mean fERG sensitivity improved by 0.3 log units compared to baseline values (P < 0.01), and mean visual acuity improved by two Snellen lines compared to baseline values (0.75 to 0.9, P < 0.01). These changes remained stable over the follow-up period. Conclusion. These results indicate that in early AMD Saffron supplementation induces macular function improvements from baseline that are extended over a long-term followup.

6.
Arch Ital Biol ; 142(2): 95-103, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15248565

ABSTRACT

We have compared the effect of two distinct Ih inhibitors on the temporal properties of the ERG response that, as previously shown, correlates well with the HCN activation in rods. The present results confirm the notion that cilobradine is more effective than zatebradine in inducing bradycardia. Importantly, the doses of cilobradine that reduce the heart rate to values comparable to, or lower than, those obtained with higher doses of zatebradine have little effect on the frequency response of the ERG. While more potent than zatebradine in its bradycardic action, cilobradine appears comparatively less effective on the visual response. A possible explanation is that the affinity of cilobradine for the HCN channels in the heart is higher than that for the HCN channels of retinal neurons.


Subject(s)
Benzazepines/pharmacology , Heart/drug effects , Ion Channels/drug effects , Retina/drug effects , Animals , Bradycardia/chemically induced , Cardiotonic Agents/pharmacology , Dose-Response Relationship, Drug , Electroretinography/drug effects , Heart/physiology , Heart Rate/drug effects , Heart Rate/physiology , Ion Channels/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Piperidines/pharmacology , Rats , Rats, Long-Evans , Retina/physiology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/physiology , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/physiology , Tachycardia/drug therapy
7.
Adv Space Res ; 33(8): 1347-51, 2004.
Article in English | MEDLINE | ID: mdl-15803626

ABSTRACT

ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft für Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space.


Subject(s)
Heavy Ions , Retina/radiation effects , Vision, Ocular/radiation effects , Animals , Dark Adaptation , Electrophysiology , Mice , Mice, Mutant Strains , Models, Animal , Particle Accelerators , Photic Stimulation , Radiation Dosage , Research Design , Space Flight
8.
J Neuroimmunol ; 106(1-2): 32-42, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-10814780

ABSTRACT

In order to study the role of interleukin-1beta (IL-1beta) in homeostasis, hypoxia and recovery of neuronal cells, we studied the expression and release of tumor necrosis factor-alpha (TNF-alpha) and nerve growth factor (NGF), in relation to the presence or absence of this cytokine in culture medium. Moreover, we evaluated cell mortality in the same conditions. For this aim, we used untreated and IL-1beta pre-immunoneutralized hippocampal neuronal cultures exposed to mild hypoxic stress and left to reoxygenate. Semiquantitative reverse-transciptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) determined gene expression and protein levels. Mild hypoxic stress provokes a decrease in both the expression and release of TNF-alpha and NGF. IL-1beta neutralization results in an inversion of this pattern since treated hypoxic cultures exhibited an increase of both expression and release of NGF. In pretreated hypoxic cells the increased expression of TNF-alpha was not followed by a rise in release. Reoxygenation reversed the observed effects in both cultures and the levels of cytokine expression and release were approaching control values. Our data show that in physiological conditions IL-1beta may have a neuroprotective action through positive modulation of NGF. Contrary to that, in presence of insult, IL-1beta may have an opposite role, since neutralization provoked an increase of expression and release of NGF. In addition, we demonstrated that neuronal cells are biochemically capable, not only of maintaining and recovering the homeostasis, but also of activating the appropriate response to insult. IL-1beta may have a pivotal role in this mechanism through the modulation of NGF and to a lesser degree of TNF-alpha.


Subject(s)
Hypoxia/physiopathology , Interleukin-1/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Cell Death , Cells, Cultured , Gene Expression , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...