Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500579

ABSTRACT

Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Cell Line, Tumor , Chlorocebus aethiops , Hep G2 Cells , Humans , Microbial Sensitivity Tests/methods , Structure-Activity Relationship , Vero Cells
2.
Tuberculosis (Edinb) ; 128: 102089, 2021 05.
Article in English | MEDLINE | ID: mdl-34004588

ABSTRACT

Antimalarial drugs have been suggested as promising scaffolds with anti-tubercular activities. In this work, we demonstrated, for the first time, the effectiveness of tafenoquine against mycobacteria. Firstly, tafenoquine inhibited the growth of Mycobacterium smegmatis and Mycobacterium tuberculosis with lower MICs values as compared to other antimalarial drugs, such as mefloquine, chloroquine, and primaquine. Importantly, tafenoquine was active against three multi-drug resistant strains of M. tuberculosis with MIC values similar to pan-sensitive strains, suggesting that tafenoquine is capable of evading the major mechanisms of resistance found in drug-resistant clinical isolates of M. tuberculosis. Importantly, tafenoquine displayed a synergistic effect when combined with mefloquine. In addition, tafenoquine displayed an improved activity compared to the groups treated with both isoniazid and rifampicin in the six-week nutrient starved M. tuberculosis cultures. This finding suggests that further investigations of tafenoquine against dormant mycobacteria are worth pursuing. Moreover, different concentrations of tafenoquine ranging from 1.25 to 80 µM displayed different effects against M. tuberculosis, from moderate (reduction of a 1.8 log CFU/mL) to potent bactericidal (reduction of a 4.2 log CFU/mL) activities. Tafenoquine may represent a hit for further drug optimization and for future clinical development as a new anti-mycobacterial agent, especially in cases of resistant and/or dormant forms of tuberculosis.


Subject(s)
Aminoquinolines/pharmacology , Mycobacterium tuberculosis/drug effects , Drug Repositioning , Drug Synergism , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Rifampin/pharmacology
3.
J Enzyme Inhib Med Chem ; 36(1): 847-855, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33752554

ABSTRACT

The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Guanosine/analogs & derivatives , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Thionucleosides/pharmacology , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Guanosine/chemical synthesis , Guanosine/chemistry , Guanosine/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Thionucleosides/chemical synthesis , Thionucleosides/chemistry
4.
Front Chem ; 8: 586294, 2020.
Article in English | MEDLINE | ID: mdl-33330374

ABSTRACT

The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.

5.
J Biol Inorg Chem ; 25(6): 887-901, 2020 09.
Article in English | MEDLINE | ID: mdl-32728907

ABSTRACT

A pharmacophore design approach, based on the coordination chemistry of an intimate molecular hybrid of active metabolites of pro-drugs, known to release active species upon enzymatic oxidative activation, is devised. This is exemplified by combining two anti-mycobacterial drugs: pyrazinamide (first line) and delamanid (third line) whose active metabolites are pyrazinoic acid (PyzCOOH) and likely nitroxyl (HNO (or NO.)), respectively. Aiming to generate those active species, a hybrid compound was envisaged by coordination of pyrazine-2-hydroxamic acid (PyzCONHOH) with a Na3[FeII(CN)5] moiety. The corresponding pentacyanoferrate(II) complex Na4[FeII(CN)5(PyzCONHO-)] was synthesized and characterized by several spectroscopic techniques, cyclic voltammetry, and DFT calculations. Chemical oxidation of this complex with H2O2 was shown to induce the release of the metabolite PyzCOOH, without the need of the Mycobacterium tuberculosis (Mtb) pyrazinamidase enzyme (PncA). Control experiments show that both H2O2- and N-coordinated pyrazine FeII species are required, ruling out a direct hydrolysis of the hydroxamic acid or an alternative oxidative route through chelation of a metal center by a hydroxamic group. The release of HNO was observed using EPR spectroscopy in the presence of a spin trapping agent. The devised iron metal complex of pyrazine-2-hydroxamic acid was found inactive against an actively growing/non-resistant Mtb strain; however, it showed a strong dose-dependent and reversible vasodilatory activity with mostly lesser toxic effects than the reference drug sodium nitroprussiate, unveiling thus a potential indication for acute or chronic cardiovascular pathology. This is a priori a further indirect evidence of HNO release from this metal complex, standing as a possible pharmacophore model for an alternative vasodilator drug.


Subject(s)
Antitubercular Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Ferrous Compounds/chemical synthesis , Hydroxamic Acids/chemistry , Iron/chemistry , Mycobacterium tuberculosis/drug effects , Nitrogen Oxides/chemistry , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Coordination Complexes/pharmacology , Drug Discovery , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Ligands , Nitrogen Oxides/metabolism , Oxidation-Reduction , Pyrazinamide/analogs & derivatives , Pyrazinamide/chemistry , Vasodilation
6.
Eur J Med Chem ; 192: 112179, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32113048

ABSTRACT

Using a classical molecular simplification approach, a series of 36 quinolines were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (M. tuberculosis) growth. Structure-activity relationship (SAR) studies leaded to potent antitubercular agents, with minimum inhibitory concentration (MIC) values as low as 0.3 µM against M. tuberculosis H37Rv reference strain. Furthermore, the lead compounds were active against multidrug-resistant strains, without cross-resistance with some first- and second-line drugs. Testing the molecules against a spontaneous mutant strain containing a single mutation in the qcrB gene (T313A) indicated that the synthesized quinolines targeted the cytochrome bc1 complex. In addition, leading compounds were devoid of apparent toxicity to HepG2 and Vero cells and showed moderate elimination rates in human liver S9 fractions. Finally, the selected structures inhibited M. tuberculosis growth in a macrophage model of tuberculosis infection. Taken together, these data indicate that this class of compounds may furnish candidates for the future development of antituberculosis drugs.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Macrophages/drug effects , Macrophages/microbiology , Mice , Microbial Sensitivity Tests , Molecular Structure , RAW 264.7 Cells , Structure-Activity Relationship , Vero Cells
7.
J Med Chem ; 62(3): 1231-1245, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30615449

ABSTRACT

Overexpressed human thymidine phosphorylase (hTP) has been associated with cancer aggressiveness and poor prognosis by triggering proangiogenic and antiapoptotic signaling. Designed as transition-state analogues by mimicking the oxacarbenium ion, novel pyrimidine-2,4-diones were synthesized and evaluated as inhibitors of hTP activity. The most potent compound (8g) inhibited hTP in the submicromolar range with a noncompetitive inhibition mode with both thymidine and inorganic phosphate substrates. Furthermore, compound 8g was devoid of apparent toxicity to a panel of mammalian cells, showed no genotoxicity signals, and had low probability of drug-drug interactions and moderate in vitro metabolic rates. Finally, treatment with 8g (50 mg/(kg day)) for 2 weeks (5 days/week) significantly reduced tumor growth using an in vivo glioblastoma model. To the best of our knowledge, this active compound is the most potent in vitro hTP inhibitor with a kinetic profile that cannot be reversed by the accumulation of any enzyme substrates.


Subject(s)
Brain Neoplasms/drug therapy , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Thymidine Phosphorylase/antagonists & inhibitors , Animals , Area Under Curve , Cell Line , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Half-Life , Humans
8.
PLoS One ; 13(8): e0202568, 2018.
Article in English | MEDLINE | ID: mdl-30114296

ABSTRACT

New effective compounds for tuberculosis treatment are needed. This study evaluated the effects of a series of quinoxaline-derived chalcones against laboratorial strains and clinical isolates of M. tuberculosis. Six molecules, namely N5, N9, N10, N15, N16, and N23 inhibited the growth of the M. tuberculosis H37Rv laboratorial strain. The three compounds (N9, N15 and N23) with the lowest MIC values were further tested against clinical isolates and laboratory strains with mutations in katG or inhA genes. From these data, N9 was selected as the lead compound for further investigation. Importantly, this chalcone displayed a synergistic effect when combined with moxifloxacin. Noteworthy, the anti-tubercular effects of N9 did not rely on inhibition of mycolic acids synthesis, circumventing important mechanisms of resistance. Interactions with cytochrome P450 isoforms and toxic effects were assessed in silico and in vitro. The chalcone N9 was not predicted to elicit any mutagenic, genotoxic, irritant, or reproductive effects, according to in silico analysis. Additionally, N9 did not cause mutagenicity or genotoxicity, as revealed by Salmonella/microsome and alkaline comet assays, respectively. Moreover, N9 did not inhibit the cytochrome P450 isoforms CYP3A4/5, CYP2C9, and CYP2C19. N9 can be considered a potential lead molecule for development of a new anti-tubercular therapeutic agent.


Subject(s)
Antitubercular Agents/pharmacology , Chalcones/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Bacterial Proteins/genetics , Catalase/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme System/genetics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/pathogenicity , Mycolic Acids/antagonists & inhibitors , Oxidoreductases/genetics , Quinoxalines/pharmacology , Tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/pathology
9.
Eur J Med Chem ; 155: 153-164, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29885576

ABSTRACT

Using a classical hybridization approach, a series of 1H-benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones were synthesized (39 examples) and evaluated as inhibitors of Mycobacterium tuberculosis growth. Chemical modification studies yielded potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.24 µM against M. tuberculosis H37Rv strain. Further, the synthesized compounds were active against four drug-resistant strains containing different levels of resistance for the first line drugs. These molecules were devoid of apparent toxicity to HepG2, HaCat, and Vero cells with IC50s > 30 µM. Viability in mammalian cell cultures was evaluated using MTT and neutral red assays. In addition, some 3,4-dihydroquinazolin-4-ones showed low risk of cardiac toxicity, no signals of neurotoxicity or morphological alteration in zebrafish (Danio rerio) toxicity models. 3,4-Dihydroquinazolin-4-ones 9q and 9w were considered the lead compounds of these series of molecules with MIC values of 0.24 µM and 0.94 µM against M. tuberculosis H37Rv, respectively. Taken together, these data indicate that this class of compounds may furnish candidates for future development of novel anti-TB drugs.


Subject(s)
Antitubercular Agents/pharmacology , Benzimidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Quinazolinones/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Structure-Activity Relationship , Zebrafish
10.
J Inorg Biochem ; 179: 71-81, 2018 02.
Article in English | MEDLINE | ID: mdl-29175704

ABSTRACT

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.


Subject(s)
Antitubercular Agents/pharmacology , Coordination Complexes/pharmacology , Ferrous Compounds/pharmacology , Isoniazid/analogs & derivatives , Isoniazid/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , Isoniazid/chemical synthesis , Isoniazid/chemistry , Microbial Sensitivity Tests , Models, Chemical , Mycobacterium tuberculosis/drug effects , Oxidation-Reduction
11.
Braz. arch. biol. technol ; 59: e16150485, 2016. graf
Article in English | LILACS | ID: biblio-951405

ABSTRACT

The esophagus and mouth tumors are very frequent malignancies worldwide. Lipopolysaccharides (LPS) are capable of regulating gene expression of pro-inflammatory cytokines by binding to toll-like receptor 4 (TLR4). Recent studies show that LPS can increase the migration ability of human esophageal cancer cell line HKESC-2 by increasing its adhesion properties. However, the effect of LPS has not been tested on viability of human esophageal and oral cancer cells. This study aimed to determine the action of LPS on the cell proliferation and viability in OE19 (adenocarcinoma) and OE21 (squamous carcinoma) cell lines, representative of human esophageal cancer, and HN30 cell line, representative of human oral carcinoma. LPS was used as treatment to OE19 and OE21 cells, and PgLPS (Porphyromonasgingivalis lipopolysaccharide) to HN30 cells. Viability was assessed by MTT assay and proliferation by cell counting. TLR4 expression was evaluated by real-time PCR. LPS at higher concentrations decreased significantly cell viability in both cell lines, adenocarcinoma (OE19) and squamous esophageal carcinoma (OE21) at different times of treatment. In addition, both cell lines, OE19 and OE21, expressed TLR4 receptor. Taken together, our data demonstrated that LPS at high concentrations might contribute to tumor death, in agreement with previously data.

SELECTION OF CITATIONS
SEARCH DETAIL
...