Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(11): 5152-5159, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38380815

ABSTRACT

Polyiodides present high bonding flexibility already at ambient conditions, and undergo significant pressure-induced structural deformations. Resonant Raman spectroscopy has been widely used to study I-I bonds in various polyiodides, but it carries a risk of photodecomposition due to the high visible-light absorption of iodine. In this study, tetraethylammonium (bis)diiodine triiodide (TEAI) has been investigated by resonant Raman spectroscopy up to 12.02(3) GPa. The effect of pressure on the intensities and positions of Raman bands has been evaluated and correlated with the interatomic I-I distances derived from high-pressure X-ray diffraction experiments. Pressure was shown to effectively stabilize TEAI against laser-induced photodecomposition, even after a long course of irradiation with the resonant laser light. Examination of a freshly exposed crystal surface revealed that TEAI superficially passivates with the layer of lower polyiodides, which prevents further iodine loss, and shows distinct pressure-induced behaviour.

2.
Phys Chem Chem Phys ; 25(45): 31410-31417, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37962235

ABSTRACT

This study focuses on the effect of structure compression and cooling on the stereoelectronic properties of the planar π-conjugated TTF-BTD (TTF = tetrathiafulvalene; BTD = 2,1,3-benzothiadiazole) molecule, a prototypical example in which an electron-donor moiety is compactly annulated to an electron-acceptor moiety. Its partially oxidised iodine salt (TTF-BTD)2I3 is a crystalline semiconductor featuring segregated columns of TTF+0.5 units stacked via alternating short and long π-π interactions. We studied TTF-BTD at temperatures ranging from 300 K to 90 K and at pressures up to 7.5 GPa, using both X-ray diffraction and Raman spectroscopy to determine the properties of the compressed samples. Periodic DFT calculations and several theoretical tools were employed to characterize the calculated structural modifications and to predict the structural changes up to 60 GPa. The existence of an unprecedented new phase is predicted above 20 GPa, following a covalent bond formation between two neighbouring TTF-BTD units.

3.
Chem Commun (Camb) ; 58(92): 12823-12826, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36317690

ABSTRACT

An isoreticular family of metal-organic frameworks is post-synthetically subjected to polymer grafting. Surface hydrophobicity analysis, adsorption experiments, and impedance spectroscopy characterise the water molecules adsorbed, both on the surface and in the pores, while resolving how molecular mobility is impacted.

5.
Inorg Chem ; 61(26): 9888-9896, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35731613

ABSTRACT

The cluster [Co38As12(CO)50]4- was obtained by pyrolysis of [Co6As(CO)16]-. The metal cage features a closed-packed core inside a Co/As shell that progressively deforms from a cubic face-centered symmetry. The redox and acid-base reactivities were determined by cyclic voltammetry and spectrophotometric titrations. The calculated electron density revealed the shell-constrained distribution of the atomic charges, induced by the presence of arsenic.


Subject(s)
Metals , Oxidation-Reduction
6.
J Phys Chem Lett ; 13(20): 4447-4454, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35561260

ABSTRACT

The vibrational response of the activated C-D bond in the chloroform complex [Pt(C6H5)2(btz-N,N')·CDCl3, where btz = 2,2'-bi-5,6-dihydro-4H-1,3-thiazine] is studied by linear and nonlinear two-dimensional infrared (2D-IR) spectroscopy. The change of the C-D stretching vibration of metal-coordinated CDCl3 relative to the free solvent molecule serves as a measure of the non-classical Pt···D-C interaction strength. The stretching absorption band of the activated C-D bond displays a red shift of 119 cm-1 relative to uncoordinated CDCl3, a strong broadening, and an 8-fold enhancement of spectrally integrated absorption. The infrared (IR) absorption and 2D-IR line shapes are governed by spectral diffusion on 200 fs and 2 ps time scales, induced by the fluctuating solvent CDCl3. The enhanced vibrational absorption and coupling to solvent forces are assigned to the enhanced electric polarizability of the activated C-D bond. Density functional theory calculations show a significant increase of C-D bond polarizability of CDCl3 upon coordination to the 16 valence electron Pt(II) complex.

7.
J Org Chem ; 87(9): 6499-6503, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35442680

ABSTRACT

We describe the asymmetric synthesis of the most pleasant enantiomer of Jessemal fragrance. The key steps are (i) the one-pot reduction of an α-chloro-tetrasubstituted cyclohexenone to give the chlorohydrin, catalyzed by two stereoselective redox enzymes (an ene-reductase and an alcohol dehydrogenase); (ii) the regioselective epoxide ring-opening with organocuprate or organolithium nucleophiles. Density functional theory calculations together with the Curtin-Hammett principle allowed the rationalization of the regioselectivity.


Subject(s)
Acetates , Pyrans , Epoxy Compounds , Stereoisomerism
8.
Acta Crystallogr A Found Adv ; 77(Pt 5): 399-419, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34473095

ABSTRACT

The previously reported exact potential and multipole moment (EP/MM) method for fast and precise evaluation of the intermolecular electrostatic interaction energies in molecular crystals using the pseudoatom representation of the electron density [Nguyen, Macchi & Volkov (2020), Acta Cryst. A76, 630-651] has been extended to the calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) in an infinite crystal. The presented approach combines an efficient Ewald-type summation (ES) of atomic multipoles up to the hexadecapolar level in direct and reciprocal spaces with corrections for (i) the net polarization of the sample (the `surface term') due to a net dipole moment of the crystallographic unit cell (if present) and (ii) the short-range electron-density penetration effects. The rederived and reported closed-form expressions for all terms in the ES algorithm have been augmented by the expressions for the surface term available in the literature [Stenhammar, Trulsson & Linse (2011), J. Chem. Phys. 134, 224104] and the exact potential expressions reported in a previous study [Volkov, King, Coppens & Farrugia (2006), Acta Cryst. A62, 400-408]. The resulting algorithm, coded using Fortran in the XDPROP module of the software package XD, was tested on several small molecular crystal systems (formamide, benzene, L-dopa, paracetamol, amino acids etc.) and compared with a series of EP/MM-based direct-space summations (DS) performed within a certain number of unit cells generated along both the positive and negative crystallographic directions. The EP/MM-based ES technique allows for a noticeably more precise determination of the EF and EFG and significantly better precision of the evaluated ESP when compared with the DS calculations, even when the latter include contributions from an array of symmetry-equivalent atoms generated within four additional unit cells along each crystallographic direction. In terms of computational performance, the ES/EP/MM method is significantly faster than the DS calculations performed within the extended unit-cell limits but trails the DS calculations within the reduced summation ranges. Nonetheless, the described EP/MM-based ES algorithm is superior to the direct-space summations as it does not require the user to monitor continuously the convergence of the evaluated properties as a function of the summation limits and offers a better precision-performance balance.

9.
J Mater Chem C Mater ; 9(25): 8051-8056, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34277008

ABSTRACT

Through in situ, high-pressure X-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct from previously reported Jahn-Teller switching in coordination polymers, which required at least two different ligands that crystallize in a reverse spectrochemical series. We show that the orbital reordering phase transition in [(CH3)2NH2]Cu(HCOO)3 is instead primarily driven by unconventional octahedral tilts and shifts in the framework, and/or a reconfiguration of A-site cation ordering. These structural instabilities are unique to the coordination polymer perovskites, and may form the basis for undiscovered orbital reorientation phenomena in this broad family of materials.

10.
Phys Chem Chem Phys ; 22(42): 24291-24298, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33089853

ABSTRACT

The breakdown of interaction energy has always been a very important means to understand chemical bonding and it has become a seamlessly useful tool for modern supramolecular chemistry. Many interaction schemes and partitioning methods are known and widely adopted. Their common mechanism is the fragmentation of a chemical system into smaller moieties and the identification of interaction energy contributions somewhat related to a physical phenomenon. However, the definitions of energy terms and of the molecular fragments are not universal, leading to complicated comparisons among different approaches and controversial interpretations. The most adopted methodologies use a partition of the Hilbert space or of the position space. In this paper, we propose a protocol to compare energy decomposition methods based on two schemes representative of each category, namely the energy decomposition analysis (EDA, Hilbert space) and the interacting quantum atom (IQA, position space).

11.
Acta Crystallogr A Found Adv ; 76(Pt 6): 630-651, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33125348

ABSTRACT

The previously reported exact potential and multipole moment (EP/MM) method for fast and accurate evaluation of the intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density [Volkov, Koritsanszky & Coppens (2004). Chem. Phys. Lett. 391, 170-175; Nguyen, Kisiel & Volkov (2018). Acta Cryst. A74, 524-536; Nguyen & Volkov (2019). Acta Cryst. A75, 448-464] is extended to the calculation of electrostatic interaction energies in molecular crystals using two newly developed implementations: (i) the Ewald summation (ES), which includes interactions up to the hexadecapolar level and the EP correction to account for short-range electron-density penetration effects, and (ii) the enhanced EP/MM-based direct summation (DS), which at sufficiently large intermolecular separations replaces the atomic multipole moment approximation to the electrostatic energy with that based on the molecular multipole moments. As in the previous study [Nguyen, Kisiel & Volkov (2018). Acta Cryst. A74, 524-536], the EP electron repulsion integral is evaluated analytically using the Löwdin α-function approach. The resulting techniques, incorporated in the XDPROP module of the software package XD2016, have been tested on several small-molecule crystal systems (benzene, L-dopa, paracetamol, amino acids etc.) and the crystal structure of a 181-atom decapeptide molecule (Z = 4) using electron densities constructed via the University at Buffalo Aspherical Pseudoatom Databank [Volkov, Li, Koritsanszky & Coppens (2004). J. Phys. Chem. A, 108, 4283-4300]. Using a 2015 2.8 GHz Intel Xeon E3-1505M v5 computer processor, a 64-bit implementation of the Löwdin α-function and one of the higher optimization levels in the GNU Fortran compiler, the ES method evaluates the electrostatic interaction energy with a numerical precision of at least 10-5 kJ mol-1 in under 6 s for any of the tested small-molecule crystal structures, and in 48.5 s for the decapeptide structure. The DS approach is competitive in terms of precision and speed with the ES technique only for crystal structures of small molecules that do not carry a large molecular dipole moment. The electron-density penetration effects, correctly accounted for by the two described methods, contribute 28-64% to the total electrostatic interaction energy in the examined systems, and thus cannot be neglected.

12.
Acta Crystallogr A Found Adv ; 76(Pt 5): 571-579, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32869754

ABSTRACT

The basic idea of frozen-density embedding theory (FDET) is the constrained minimization of the Hohenberg-Kohn density functional EHK[ρ] performed using the auxiliary functional E_{v_{AB}}^{\rm FDET}[\Psi _A, \rho _B], where ΨA is the embedded NA-electron wavefunction and ρB(r) is a non-negative function in real space integrating to a given number of electrons NB. This choice of independent variables in the total energy functional E_{v_{AB}}^{\rm FDET}[\Psi _A, \rho _B] makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. The application of FDET using ρB(r) reconstructed from X-ray diffraction data for a molecular crystal is demonstrated for the first time. For eight hydrogen-bonded clusters involving a chromophore (represented as ΨA) and the glycylglycine molecule [represented as ρB(r)], FDET is used to derive excitation energies. It is shown that experimental densities are suitable for use as ρB(r) in FDET-based simulations.

13.
Chemphyschem ; 21(19): 2155-2165, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32716594

ABSTRACT

Within the scope of accurate structure-property correlations in biomolecules, this work investigates how conformations and electronic configurations of biologically relevant macromolecules affect their intermolecular potentials. With the purpose of testing the suitability of a simple and universal model, the dipeptides are made from the assembly of their building blocks, namely the amino acid residuals or, more finely tuned, the individual functional groups. The model makes use of functional-group electrostatic potentials (GEP) and distributed polarizabilities (GDP), which enable an in depth analysis of the correlation between structural features and property build-up. GEPs and GDPs are calculated for various conformers and protonation states of L-alanyl-L-alanine, glycyl-L-alanine, L-alanylglycine, and glycylglycine, which are prototypic molecules to model the pertinent functional groups. The model provides GEPs that reproduce the exact potential to an average accuracy of ca. 0.05 au. The good agreement between the properties estimated with the simple model and those calculated with state-of-the-art quantum chemical methods encourages further testing of the predictive power of this model, simulating for example interaction energies and optoelectronic properties.


Subject(s)
Dipeptides/chemistry , Amino Acids/chemistry , Models, Molecular , Quantum Theory , Static Electricity
14.
Inorg Chem ; 59(14): 10091-10098, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32615765

ABSTRACT

We report the pressure-induced structural and magnetic changes in [CuCl(pyz)2](BF4) (pyz = pyrazine) and [CuBr(pyz)2](BF4), two members of a family of three-dimensional coordination polymers based on square mesh {[Cu(pyz)2]2+}n layers. High-pressure X-ray diffraction and density functional theory calculations have been used to investigate the structure-magnetic property relationship. Although structurally robust and almost undeformed within a large pressure range, the {[Cu(pyz)2]2+}n network can be electronically modified by adjusting the interaction of the apical linkers interconnecting the layers, which has strong implications for the magnetic properties. It is then demonstrated that the degree of covalent character of the apical interaction explains the difference in magnetic exchange between the two species. We have also investigated the mechanical deformation of the network induced by nonhydrostatic compression that affects the structure depending on the crystal orientation. The obtained results suggest the existence of "Jahn-Teller frustration" triggered at the highest hydrostatic pressure limit.

15.
Inorg Chem ; 59(4): 2223-2227, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31999110

ABSTRACT

Two isostructural coordination polymers with coinage metal(I) cations were compressed with the purpose of testing interactions between chains, which may trigger metallophilic interactions or otherwise expand the metal coordination. DFT calculations and X-ray diffraction studies reveal an extraordinary difference between Ag(I) and Cu(I) in homologous compounds. Argentophilic interactions are favored by a mild compression, and at P = 7.94 GPa, the Ag-Ag distance matches the value of metallic silver. On the other hand, no cuprophilic interaction is activated even by compression up to 8 GPa, and Cu-Cu distances remain outside the van der Waals spheres.

16.
Chemphyschem ; 21(19): 2144, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33462947

ABSTRACT

The front cover artwork is provided by the groups of Dr. Anna Krawczuk (Jagiellonian University, Poland), Prof. Leonardo H. R. Dos Santos (Universidade Federal de Minas Gerais, Brazil) and Prof. Piero Macchi (Polytechnics of Milan, Italy). The image shows electrostatic potentials and distributed polarizabilities of dipeptides reconstructed from functional-group methods based on quantum theory of atoms in molecules. Read the full text of the Article at 10.1002/cphc.202000441.


Subject(s)
Dipeptides/chemistry , Humans , Models, Molecular , Quantum Theory , Static Electricity
17.
J Am Chem Soc ; 141(23): 9382-9390, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31129957

ABSTRACT

Two isostructural highly porous metal-organic frameworks, the well-known {Cu3(BTC)2} n (BTC = 1,3,5-benzenetricarboxylate), often appointed with the name HKUST-1, and {Zn3(BTC)2} n, have been investigated as models for the buildup of dielectric properties, differentiating the role of chemi- and physisorbed guest molecules and that of specific intraframework and framework-guest linkages. For this purpose, electron charge density analysis, impedance spectroscopy, density functional theory simulations, and atomic partitioning of the polarizabilities have been exploited. These analyses at different degrees of pores filling enabled one to observe structural and electronic changes induced by guest molecules, especially when chemisorbed. The electrostatic potential inside the pores allows one to describe the absorption mechanism and to estimate the polarization of guests induced by the framework. The dielectric constant shows very diverse frequency dependence and magnitude of real and imaginary components as a consequence of (I) capture of guest molecules in the pores during synthesis, (II) MOF activation, and (III) water absorption from the atmosphere after activation. Comparison with calculated static-dielectric constant and atomic polarizabilities of the material has allowed for evaluating building blocks' contribution to the overall property, paving the way for reverse crystal engineering of these species.

18.
Angew Chem Int Ed Engl ; 58(20): 6625-6629, 2019 May 13.
Article in English | MEDLINE | ID: mdl-30844119

ABSTRACT

We report the high-pressure structural characterization of an organic polyiodide salt in which a progressive addition of iodine to triiodide groups occurs. Compression leads to the initial formation of discrete heptaiodide units, followed by polymerization to a 3D anionic network. Although the structural changes appear to be continuous, the insulating salt becomes a semiconducting polymer above 10 GPa. The features of the pre-reactive state and the polymerized state are revealed by analysis of the computed electron and energy densities. The unusually high electrical conductivity can be explained with the formation of new bonds.

19.
Phys Chem Chem Phys ; 21(3): 1014-1018, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30574636

ABSTRACT

The quasi-one-dimensional molecule-based Heisenberg antiferromagnet Cu(NO3)2(pyz)3 has an intrachain coupling J = 13.7(1) K () and exhibits a state of long-range magnetic order below TN = 0.105(1) K. The ratio of interchain to intrachain coupling is estimated to be |J'/J| = 3.3 × 10-3, demonstrating a high degree of isolation for the Cu chains.

20.
IUCrJ ; 5(Pt 5): 654-657, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30224968

ABSTRACT

The recent paper by Belo, Pereira, Freire, Argyriou, Eckert & Bordallo [(2018 ▸), IUCrJ, 5, 6-12] reports observations that may lead one to think of very strong and visible consequences of the parity-violation energy difference between enantiomers of a molecule, namely alanine. If proved, this claim would have an enormous impact for research in structural chemistry. However, alternative, more realistic, explanations of their experiments have not been ruled out by the authors. Moreover, the theoretical calculations carried out to support the hypothesis are unable to differentiate between enantiomers (molecules or crystals). Therefore, the conclusions drawn by Belo et al. (2018 ▸) are deemed inappropriate as the data presented do not contain sufficient information to reach such a conclusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...