Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(16): 4533-4544, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35656128

ABSTRACT

Fuel-driven macromolecular coacervation is an entry into the transient formation of highly charged, responsive material phases. In this work, we used a chemical reaction network (CRN) to drive the coacervation of macromolecular species readily produced using radical polymerisation methods. The CRN enables transient quaternization of tertiary amine substrates, driven by the conversion of electron deficient allyl acetates and thiol or amine nucleophiles. By incorporating tertiary amine functionality into block copolymers, we demonstrate chemical triggered complex coacervate core micelle (C3M) assembly and disassembly. In contrast to most dynamic coacervate systems, this CRN operates at constant physiological pH without the need for complex biomolecules. By varying the allyl acetate fuel, deactivating nucleophile and reagent ratios, we achieved both sequential signal-induced C3M (dis)assembly, as well as transient non-equilibrium (dis)assembly. We expect that timed and signal-responsive control over coacervate phase formation at physiological pH will find application in nucleic acid delivery, nano reactors and protocell research.

2.
Org Lett ; 22(15): 6035-6040, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32790427

ABSTRACT

Acylhydrazones formation has been widely applied in materials science and biolabeling. However, their sluggish condensation rate under neutral conditions limits its application. Herein, indolines with electron-donating groups are reported as a new catalyst scaffold, which can catalyze acylhydrazone, hydrazone, and oxime formation via an iminium ion intermediate. This new type of catalyst showed up to 15-fold rate enhancement over the traditional aniline-catalyzed reaction at neutral conditions. The identified indoline catalyst was successfully applied in hydrogel formation.

3.
Angew Chem Int Ed Engl ; 59(46): 20604-20611, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32700406

ABSTRACT

Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, man-made catalytically controlled networks are rare. We incorporated catalysis into an artificial fuel-driven out-of-equilibrium CRN, where the forward (ester formation) and backward (ester hydrolysis) reactions are controlled by varying the ratio of two organocatalysts: pyridine and imidazole. This catalytic regulation enables full control over ester yield and lifetime. This fuel-driven strategy was expanded to a responsive polymer system, where transient polymer conformation and aggregation are controlled through fuel and catalyst levels. Altogether, we show that organocatalysis can be used to control a man-made fuel-driven system and induce a change in a macromolecular superstructure, as in natural non-equilibrium systems.

4.
Angew Chem Int Ed Engl ; 58(44): 15752-15756, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31539191

ABSTRACT

Planarizable push-pull probes have been introduced to demonstrate physical forces in biology. However, the donors and acceptors needed to polarize mechanically planarized probes are incompatible with their twisted resting state. The objective of this study was to overcome this "flipper dilemma" with chalcogen-bonding cascade switches that turn on donors and acceptors only in response to mechanical planarization of the probe. This concept is explored by molecular dynamics simulations as well as chemical double-mutant cycle analysis. Cascade switched flipper probes turn out to excel with chemical stability, red shifts adding up to high significance, and focused mechanosensitivity. Most important, however, is the introduction of a new, general and fundamental concept that operates with non-trivial supramolecular chemistry, solves an important practical problem and opens a wide chemical space.


Subject(s)
Chalcogens/chemistry , Fluorescent Dyes/chemistry , Molecular Structure
5.
J Cell Biol ; 218(7): 2265-2276, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31123183

ABSTRACT

Target of rapamycin complex 2 (TORC2) is a conserved protein kinase that regulates multiple plasma membrane (PM)-related processes, including endocytosis. Direct, chemical inhibition of TORC2 arrests endocytosis but with kinetics that is relatively slow and therefore inconsistent with signaling being mediated solely through simple phosphorylation cascades. Here, we show that in addition to and independently from regulation of the phosphorylation of endocytic proteins, TORC2 also controls endocytosis by modulating PM tension. Elevated PM tension, upon TORC2 inhibition, impinges on endocytosis at two different levels by (1) severing the bonds between the PM adaptor proteins Sla2 and Ent1 and the actin cytoskeleton and (2) hindering recruitment of Rvs167, an N-BAR-containing protein important for vesicle fission to endocytosis sites. These results underline the importance of biophysical cues in the regulation of cellular and molecular processes.


Subject(s)
Cytoskeletal Proteins/genetics , Endocytosis/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Microfilament Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , Actin Cytoskeleton/genetics , Cell Membrane/genetics , Cytoplasm/genetics , Phosphorylation , Saccharomyces cerevisiae/genetics , Signal Transduction/genetics
6.
Chempluschem ; 82(7): 1062-1066, 2017 Jul.
Article in English | MEDLINE | ID: mdl-31961614

ABSTRACT

Planarizable push-pull fluorescent probes, also referred to as flipper probes, have been introduced as conceptually innovative mechanophores that report on forces in their local environment in lipid bilayer membranes. The best flipper probes respond to a change from liquid disordered to solid ordered membranes with a red shift in excitation of 50-90 nm. A simultaneous increase in fluorescence lifetime and negligible background fluorescence from the aqueous phase qualifies these fluorescent probes for meaningful imaging in live cells. Here, we report that the replacement of methyl with isobutyl substituents along the scaffold of a dithienothiophene dimer strongly reduces fluorescence intensity but increases solvatochromism slightly. These trends imply that the large substituents in "leucine flippers" hinder the planarization in the first excited state to result in twisted intramolecular charge transfer (TICT). As a result of this overtwisting, the leucine flippers form interesting fluorescent micelles in water but fail to respond to changes in membrane order. These dramatic changes in function provide one of the most impressive illustrations for the hypersensitivity of fluorescent membrane probes toward small changes in their structure.

7.
J Am Chem Soc ; 138(29): 9093-6, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27433964

ABSTRACT

In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...