Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Transl Psychiatry ; 14(1): 154, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509093

ABSTRACT

Short-hairpin RNAs (shRNA), targeting knockdown of specific genes, hold enormous promise for precision-based therapeutics to treat numerous neurodegenerative disorders. However, whether shRNA constructed molecules can modify neuronal circuits underlying certain behaviors has not been explored. We designed shRNA to knockdown the human HTR2A gene in vitro using iPSC-differentiated neurons. Multi-electrode array (MEA) results showed that the knockdown of the 5HT-2A mRNA and receptor protein led to a decrease in spontaneous electrical activity. In vivo, intranasal delivery of AAV9 vectors containing shRNA resulted in a decrease in anxiety-like behavior in mice and a significant improvement in memory in both mice (104%) and rats (92%) compared to vehicle-treated animals. Our demonstration of a non-invasive shRNA delivery platform that can bypass the blood-brain barrier has broad implications for treating numerous neurological mental disorders. Specifically, targeting the HTR2A gene presents a novel therapeutic approach for treating chronic anxiety and age-related cognitive decline.


Subject(s)
Anxiety , Neurons , Animals , Humans , Mice , Rats , Anxiety/genetics , Anxiety/therapy , Anxiety Disorders , Gene Knockdown Techniques , Neurons/metabolism , RNA, Small Interfering/genetics , Receptor, Serotonin, 5-HT2A/metabolism
2.
Biol Psychiatry ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070846

ABSTRACT

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

3.
Psychiatry Res Neuroimaging ; 335: 111710, 2023 10.
Article in English | MEDLINE | ID: mdl-37690161

ABSTRACT

Individuals with schizophrenia (SZ) show aberrant activations, assessed via functional magnetic resonance imaging (fMRI), during auditory oddball tasks. However, associations with cognitive performance and genetic contributions remain unknown. This study compares individuals with SZ to healthy volunteers (HVs) using two cross-sectional data sets from multi-center brain imaging studies. It examines brain activation to auditory oddball targets, and their associations with cognitive domain performance, schizophrenia polygenic risk scores (PRS), and genetic variation (loci). Both sample 1 (137 SZ vs. 147 HV) and sample 2 (91 SZ vs. 98 HV), showed hypoactivation in SZ in the left-frontal pole, and right frontal orbital, frontal pole, paracingulate, intracalcarine, precuneus, supramarginal and hippocampal cortices, and right thalamus. In SZ, precuneus activity was positively related to cognitive performance. Schizophrenia PRS showed a negative correlation with brain activity in the right-supramarginal cortex. GWA analyses revealed significant single-nucleotide polymorphisms associated with right-supramarginal gyrus activity. RPL36 also predicted right-supramarginal gyrus activity. In addition to replicating hypoactivation for oddball targets in SZ, this study identifies novel relationships between regional activity, cognitive performance, and genetic loci that warrant replication, emphasizing the need for continued data sharing and collaborative efforts.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/complications , Cross-Sectional Studies , Brain , Cerebral Cortex , Frontal Lobe
4.
Transl Psychiatry ; 13(1): 181, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244930

ABSTRACT

Transposable elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the dorsolateral prefrontal cortex of schizophrenic and control individuals and identified 38 nrTEs that possibly contribute to the emergence of this psychiatric disorder, two of them further confirmed with haplotype-based methods. We then performed in silico functional inferences and found that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. To our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be key to understanding the ethio-pathogenesis of this complex disorder.


Subject(s)
Retroelements , Schizophrenia , Humans , Retroelements/genetics , Schizophrenia/genetics , Brain , Quantitative Trait Loci , Haplotypes
5.
Res Sq ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747630

ABSTRACT

Transposable Elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the Dorsolateral Prefrontal Cortex of schizophrenic and control individuals, and identified 38 nrTEs which possibly contribute to the emergence of this psychiatric disorder. Furthermore, we performed in silico functional inferences and found, for instance, that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. Therefore, to our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be the key to understanding the ethiopathogenesis of this complex disorder.

6.
Schizophr Bull ; 48(6): 1306-1317, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35988022

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors, yet patients display differential levels of cognitive impairment. We hypothesized a genome-transcriptome-functional connectivity (frontoparietal)-cognition pathway linked to SZ-versus-BD differences, and conducted a multiscale study to delineate this pathway. STUDY DESIGNS: Large genome-wide studies provided single nucleotide polymorphisms (SNPs) conferring more risk for SZ than BD, and we identified their regulated genes, namely SZ-biased SNPs and genes. We then (a) computed the polygenic risk score for SZ (PRSSZ) of SZ-biased SNPs and examined its associations with imaging-based frontoparietal functional connectivity (FC) and cognitive performances; (b) examined the spatial correlation between ex vivo postmortem expressions of SZ-biased genes and in vivo, SZ-related FC disruptions across frontoparietal regions; (c) investigated SZ-versus-BD differences in frontoparietal FC; and (d) assessed the associations of frontoparietal FC with cognitive performances. STUDY RESULTS: PRSSZ of SZ-biased SNPs was significantly associated with frontoparietal FC and working memory test scores. SZ-biased genes' expressions significantly correlated with SZ-versus-BD differences in FC across frontoparietal regions. SZ patients showed more reductions in frontoparietal FC than BD patients compared to controls. Frontoparietal FC was significantly associated with test scores of multiple cognitive domains including working memory, and with the composite scores of all cognitive domains. CONCLUSIONS: Collectively, these multiscale findings support the hypothesis that SZ-biased genetic risk, through transcriptome regulation, is linked to frontoparietal dysconnectivity, which in turn contributes to differential cognitive deficits in SZ-versus BD, suggesting that potential biomarkers for more precise patient stratification and treatment.


Subject(s)
Bipolar Disorder , Cognition Disorders , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Transcriptome , Cognition
7.
Sci Rep ; 12(1): 6468, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618734

ABSTRACT

The archaeological site of Pompeii is one of the 54 UNESCO World Heritage sites in Italy, thanks to its uniqueness: the town was completely destroyed and buried by a Vesuvius' eruption in 79 AD. In this work, we present a multidisciplinary approach with bioarchaeological and palaeogenomic analyses of two Pompeian human remains from the Casa del Fabbro. We have been able to characterize the genetic profile of the first Pompeian' genome, which has strong affinities with the surrounding central Italian population from the Roman Imperial Age. Our findings suggest that, despite the extensive connection between Rome and other Mediterranean populations, a noticeable degree of genetic homogeneity exists in the Italian peninsula at that time. Moreover, palaeopathological analyses identified the presence of spinal tuberculosis and we further investigated the presence of ancient DNA from Mycobacterium tuberculosis. In conclusion, our study demonstrates the power of a combined approach to investigate ancient humans and confirms the possibility to retrieve ancient DNA from Pompeii human remains. Our initial findings provide a foundation to promote an intensive and extensive paleogenetic analysis in order to reconstruct the genetic history of population from Pompeii, a unique archaeological site.


Subject(s)
DNA, Ancient , Exanthema , Archaeology , Body Remains , Humans , Italy
8.
Geroscience ; 44(3): 1525-1550, 2022 06.
Article in English | MEDLINE | ID: mdl-35585302

ABSTRACT

Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer's disease (LOAD) over a relatively short period of time (12-48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.


Subject(s)
Alzheimer Disease , Retroelements , Alzheimer Disease/genetics , Biomarkers , Humans , RNA
9.
Schizophr Res ; 249: 25-37, 2022 11.
Article in English | MEDLINE | ID: mdl-32513544

ABSTRACT

Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.


Subject(s)
Receptors, AMPA , Schizophrenia , Humans , Receptors, AMPA/genetics , Synaptic Transmission/physiology , Schizophrenia/genetics , Proteomics , Kainic Acid
11.
J Alzheimers Dis ; 83(3): 1161-1171, 2021.
Article in English | MEDLINE | ID: mdl-34397408

ABSTRACT

BACKGROUND: Altered plasma levels of sphingolipids, including sphingomyelins (SM), have been found in mouse models of Alzheimer's disease (AD) and in AD patient plasma samples. OBJECTIVE: This study assesses fourteen plasma SM species in a late-onset AD (LOAD) patient cohort (n = 138). METHODS: Specimens from control, preclinical, and symptomatic subjects were analyzed using targeted mass-spectrometry-based metabolomic methods. RESULTS: Total plasma SM levels were not significantly affected by age or cognitive status. However, one metabolite that has been elevated in manifest AD in several recent studies, SM OHC14:1, was reduced significantly in pre-clinical AD and MCI relative to normal controls. CONCLUSION: We recommend additional comprehensive plasma lipidomics in experimental and clinical biospecimens related to LOAD that might advance the utility of plasma sphingomyelin levels in molecular phenotyping and interpretations of pathobiological mechanisms.


Subject(s)
Alzheimer Disease/blood , Asymptomatic Diseases , Metabolomics , Sphingolipids/blood , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Mass Spectrometry
12.
Hum Brain Mapp ; 42(8): 2556-2568, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33724588

ABSTRACT

Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case-control classification. An L0 -norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi-study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.


Subject(s)
Cerebral Cortex/pathology , Deep Learning , Gray Matter/pathology , Neuroimaging , Schizophrenia/genetics , Schizophrenia/pathology , Adult , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging/methods , Polymorphism, Single Nucleotide , Schizophrenia/classification , Schizophrenia/diagnostic imaging , Support Vector Machine
13.
Cereb Cortex ; 31(4): 1873-1887, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33290510

ABSTRACT

Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000-3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure.


Subject(s)
Biological Evolution , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Genetic Variation/genetics , Genome-Wide Association Study/methods , Genetic Testing/methods , Humans , Magnetic Resonance Imaging/trends , Multifactorial Inheritance/genetics , Organ Size/genetics , Quantitative Trait Loci/genetics
14.
Alzheimers Dement (Amst) ; 12(1): e12028, 2020.
Article in English | MEDLINE | ID: mdl-32258359

ABSTRACT

INTRODUCTION: Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS: We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS: We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION: Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.

15.
Psychol Med ; 50(8): 1267-1277, 2020 06.
Article in English | MEDLINE | ID: mdl-31155012

ABSTRACT

BACKGROUND: Schizophrenia is associated with robust hippocampal volume deficits but subregion volume deficits, their associations with cognition, and contributing genes remain to be determined. METHODS: Hippocampal formation (HF) subregion volumes were obtained using FreeSurfer 6.0 from individuals with schizophrenia (n = 176, mean age ± s.d. = 39.0 ± 11.5, 132 males) and healthy volunteers (n = 173, mean age ± s.d. = 37.6 ± 11.3, 123 males) with similar mean age, gender, handedness, and race distributions. Relationships between the HF subregion volume with the largest between group difference, neuropsychological performance, and single-nucleotide polymorphisms were assessed. RESULTS: This study found a significant group by region interaction on hippocampal subregion volumes. Compared to healthy volunteers, individuals with schizophrenia had significantly smaller dentate gyrus (DG) (Cohen's d = -0.57), Cornu Ammonis (CA) 4, molecular layer of the hippocampus, hippocampal tail, and CA 1 volumes, when statistically controlling for intracranial volume; DG (d = -0.43) and CA 4 volumes remained significantly smaller when statistically controlling for mean hippocampal volume. DG volume showed the largest between group difference and significant positive associations with visual memory and speed of processing in the overall sample. Genome-wide association analysis with DG volume as the quantitative phenotype identified rs56055643 (ß = 10.8, p < 5 × 10-8, 95% CI 7.0-14.5) on chromosome 3 in high linkage disequilibrium with MOBP. Gene-based analyses identified associations between SLC25A38 and RPSA and DG volume. CONCLUSIONS: This study suggests that DG dysfunction is fundamentally involved in schizophrenia pathophysiology, that it may contribute to cognitive abnormalities in schizophrenia, and that underlying biological mechanisms may involve contributions from MOBP, SLC25A38, and RPSA.


Subject(s)
Dentate Gyrus/pathology , Schizophrenia/genetics , Schizophrenia/pathology , Adult , Case-Control Studies , Cognition , Female , Genome-Wide Association Study , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mitochondrial Membrane Transport Proteins/genetics , Myelin Proteins/genetics , Organ Size , Receptors, Laminin/genetics , Regression Analysis , Ribosomal Proteins/genetics
16.
Mol Psychiatry ; 25(10): 2455-2467, 2020 10.
Article in English | MEDLINE | ID: mdl-31591465

ABSTRACT

Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.


Subject(s)
Black People/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hispanic or Latino/genetics , Schizophrenia/genetics , Female , Genetic Loci , Humans , Male , Polymorphism, Single Nucleotide/genetics
17.
J Neurosci Methods ; 320: 64-71, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30902651

ABSTRACT

It has been widely shown that genomic factors influence both risk for schizophrenia and variation in functional brain connectivity. Moreover, schizophrenia is characterized by disrupted brain connectivity. In this work, we proposed a genome-connectome bipartite graph model to perform imaging genomic analysis. Functional network connectivity (FNC) was estimated after decomposing resting state functional magnetic resonance imaging data from both healthy controls (HC) and patients with schizophrenia (SZ) into spatial brain components using group independent component analysis (G-ICA). Then 83 FNC connections showing a group difference (HC vs SZ) were selected as fMRI nodes, and eighty-one schizophrenia-related single nucleotide polymorphisms (SNPs) were selected as genetic nodes respectively in the bipartite graph. Edges connecting pairs of genetic and fMRI nodes were defined based on the SNP-FNC associations across subjects evaluated by a general linear model. Results show that some SNP nodes in the bipartite graph have a high degree implying they are influential in modulating brain connectivity and may be more strongly associated with the risk of schizophrenia than other SNPs. A bi-clustering analysis detected a cluster with 15 SNPs interacting with 38 FNC connections, most of which were within or between somato-motor and visual brain areas. This suggests that the activity of these brain regions may be related to common SNPs and provides insights into the pathology of schizophrenia. The findings suggest that the SNP-FNC bipartite graph approach is a novel model to investigate genetic influences on functional brain connectivity in mental illness.


Subject(s)
Brain/metabolism , Brain/physiopathology , Connectome , Genome, Human , Models, Biological , Neurosciences/methods , Schizophrenia/genetics , Schizophrenia/physiopathology , Adult , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Polymorphism, Single Nucleotide , Schizophrenia/diagnostic imaging , Young Adult
19.
Schizophr Bull ; 45(1): 222-232, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29474680

ABSTRACT

Genetic factors are known to influence both risk for schizophrenia (SZ) and variation in brain structure. A pressing question is whether the genetic underpinnings of brain phenotype and the disorder overlap. Using multivariate analytic methods and focusing on 1,402 common single-nucleotide polymorphisms (SNPs) mapped from the Psychiatric Genomics Consortium (PGC) 108 regions, in 777 discovery samples, we identified 39 SNPs to be significantly associated with SZ-discriminating gray matter volume (GMV) reduction in inferior parietal and superior temporal regions. The findings were replicated in 609 independent samples. These 39 SNPs in chr6:28308034-28684183 (6p22.1), the most significant SZ-risk region reported by PGC, showed regulatory effects on both DNA methylation and gene expression of postmortem brain tissue and saliva. Furthermore, the regulated methylation site and gene showed significantly different levels of methylation and expression in the prefrontal cortex between cases and controls. In addition, for one regulated methylation site we observed a significant in vivo methylation-GMV association in saliva, suggesting a potential SNP-methylation-GMV pathway. Notably, the risk alleles inferred for GMV reduction from in vivo imaging are all consistent with the risk alleles for SZ inferred from postmortem data. Collectively, we provide evidence for shared genetic risk of SZ and regional GMV reduction in 6p22.1 and demonstrate potential molecular mechanisms that may drive the observed in vivo associations. This study motivates dissecting SZ-risk variants to better understand their associations with focal brain phenotypes and the complex pathophysiology of the illness.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Genetic Predisposition to Disease/genetics , Gray Matter/pathology , Parietal Lobe/pathology , Prefrontal Cortex/pathology , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Schizophrenia/genetics , Schizophrenia/pathology , Adolescent , Adult , Female , Genetic Association Studies , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parietal Lobe/diagnostic imaging , Polymorphism, Single Nucleotide , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Risk , Schizophrenia/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...