Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(20): 14121-14143, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36216349

ABSTRACT

Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum/metabolism , Aspartic Acid Endopeptidases , Malaria/drug therapy
2.
J Med Chem ; 65(13): 8699-8712, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35730680

ABSTRACT

We present a comprehensive analysis of all ring systems (both heterocyclic and nonheterocyclic) in clinical trial compounds and FDA-approved drugs. We show 67% of small molecules in clinical trials comprise only ring systems found in marketed drugs, which mirrors previously published findings for newly approved drugs. We also show there are approximately 450 000 unique ring systems derived from 2.24 billion molecules currently available in synthesized chemical space, and molecules in clinical trials utilize only 0.1% of this available pool. Moreover, there are fewer ring systems in drugs compared with those in clinical trials, but this is balanced by the drug ring systems being reused more often. Furthermore, systematic changes of up to two atoms on existing drug and clinical trial ring systems give a set of 3902 future clinical trial ring systems, which are predicted to cover approximately 50% of the novel ring systems entering clinical trials.

3.
Front Chem ; 9: 668186, 2021.
Article in English | MEDLINE | ID: mdl-34017820

ABSTRACT

Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.

4.
Chem Sci ; 9(3): 629-633, 2018 Jan 21.
Article in English | MEDLINE | ID: mdl-29629128

ABSTRACT

Sulfones feature prominently in biologically active molecules and are key functional groups for organic synthesis. We report a mild, photoredox-catalyzed reaction for sulfonylation of aniline derivatives with sulfinate salts, and demonstrate the utility of the method by the late-stage functionalization of drugs. Key features of the method are the straightforward generation of sulfonyl radicals from bench-stable sulfinate salts and the use of simple aniline derivatives as convenient readily available coupling partners.

5.
J Med Chem ; 61(10): 4283-4289, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29140691

ABSTRACT

Tackling PPIs, particularly by stabilizing clinically favored conformations of target proteins, with orally available, bona fide small molecules remains a significant but immensely worthwhile challenge for the pharmaceutical industry. Success may be more likely through the application of nature's learnings to build intrinsic rigidity into the design of clinical candidates.


Subject(s)
Drug Design , Protein Interaction Domains and Motifs/drug effects , Protein Stability/drug effects , Proteins/metabolism , Small Molecule Libraries/pharmacology , Drug Discovery , Humans , Protein Binding , Small Molecule Libraries/chemistry
6.
Chemistry ; 23(59): 14733-14737, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28833674

ABSTRACT

Heteroaromatic nitriles are important compounds in drug discovery, both for their prevalence in the clinic and due to the diverse range of transformations they can undergo. As such, efficient and reliable methods to access them have the potential for far-reaching impact across synthetic chemistry and the biomedical sciences. Herein, we report an approach to heteroaromatic C-H cyanation through triflic anhydride activation, nucleophilic addition of cyanide, followed by elimination of trifluoromethanesulfinate to regenerate the cyanated heteroaromatic ring. This one-pot protocol is simple to perform, is applicable to a broad range of decorated 6-ring N-containing heterocycles, and has been shown to be suitable for late-stage functionalization of complex drug-like architectures.

7.
J Med Chem ; 60(5): 1638-1647, 2017 03 09.
Article in English | MEDLINE | ID: mdl-27935308

ABSTRACT

We have enumerated all linear combinations of ring systems from FDA approved drugs, up to three rings in length and up to four bonds linkers to give an in silico database of approximately 14 million molecules. This virtual library was compared with molecular databases of published and commercially available compounds to assess the prevalence of drug ring combinations in modern medicinal chemistry and to identify areas of under-represented, but clinically validated, chemical space. From the 10 trillion molecular comparisons, we found that less than 1% of the possible combinations of drug ring systems appear in commercially available libraries. This key observation highlights significant opportunities to design new fragment-like and lead-like libraries aimed at improving success rates and reducing risk in small molecule drug discovery, as, based on our previous analysis ( Taylor J. Med. Chem. 2014 , 57 , 5845 - 5849 ), approximately 70% of all new drugs are made up of only ring systems that have been used in existing drugs.


Subject(s)
Drug Approval/legislation & jurisprudence , Drug Discovery , Small Molecule Libraries , United States , United States Food and Drug Administration
8.
J Med Chem ; 57(14): 5845-59, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24471928

ABSTRACT

We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.


Subject(s)
Pharmaceutical Preparations/chemistry , Small Molecule Libraries/chemistry , Algorithms , Molecular Structure , Small Molecule Libraries/therapeutic use
9.
Bioorg Med Chem Lett ; 22(22): 6967-73, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23036957

ABSTRACT

The installation of geminal substitution at the C5' position of the carbosugar in our pyrimidine-derived hepatitis C inhibitor series is reported. SAR studies around the C5' position led to the installation of the dimethyl group as the optimal functionality. An improved route was subsequently designed to access these substitutions. Expanded SAR at the C2 amino position led to the utilization of C2 ethers. These compounds exhibited good potency, high selectivity, and excellent plasma exposure and bioavailability in rodent as well as in higher species.


Subject(s)
Antiviral Agents/chemical synthesis , Carbohydrates/chemistry , Pyrimidines/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Dogs , Half-Life , Haplorhini , Hepacivirus/drug effects , Hepacivirus/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship , Virus Replication/drug effects
10.
Bioorg Med Chem Lett ; 22(17): 5652-7, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22858143

ABSTRACT

Introduction of a nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzothiazole inhibitor 1, resulted in the discovery of the more potent pyridothiazole analogues 3. The potency and PK properties of the compounds were attenuated by the introductions of various functionalities at the R(1), R(2) or R(3) positions of the molecule (compound 3). Inhibitors 38 and 44 displayed excellent potency, selectivity (GAPDH/MTS CC(50)), PK parameters in all species studied, and cross genotype activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacokinetics , Dogs , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
11.
Bioorg Med Chem Lett ; 22(15): 5144-9, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22814211

ABSTRACT

Introduction of nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzofuran inhibitor 2, resulted in the discovery of the more potent pyridofuran analogue 5. Subsequent introduction of small alkyl and alkoxy ligands into the pyridine ring resulted in further improvements in replicon potency. Replacement of the 4-chloro moiety on the pyrimidine core with a methyl group, and concomitant monoalkylation of the C-2 amino moiety resulted in the identification of several inhibitors with desirable characteristics. Inhibitor 41, from the monosubstituted pyridofuran and inhibitor 50 from the disubstituted series displayed excellent potency, selectivity (GAPDH/MTS CC(50)) and PK parameters in all species studied, while the selectivity in the thymidine incorporation assay (DNA·CC(50)) was low.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Furans/chemistry , Hepacivirus/enzymology , Pyrimidine Nucleosides/chemistry , Pyrimidines/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzofurans/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Furans/chemical synthesis , Furans/pharmacokinetics , Half-Life , Liver/metabolism , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , RNA-Dependent RNA Polymerase/metabolism , Rats , Structure-Activity Relationship , Virus Replication/drug effects
12.
Bioorg Med Chem Lett ; 22(9): 3229-34, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22472692

ABSTRACT

Based on a previously identified HCV replication (replicase) inhibitor 1, SAR efforts were conducted around the pyrimidine core to improve the potency and pharmacokinetic profile of the inhibitors. A benzothiazole moiety was found to be the optimal substituent at the pyrimidine 5-position. Due to potential reactivity concern, the 4-chloro residue was replaced by a methyl group with some loss in potency and enhanced rat in vivo profile. Extensive investigations at the C-2 position resulted in identification of compound 16 that demonstrated very good replicon potency, selectivity and rodent plasma/target organ concentration. Inhibitor 16 also demonstrated good plasma levels and oral bioavailability in dogs, while monkey exposure was rather low. Chemistry optimization towards a practical route to install the benzothiazole moiety resulted in an efficient direct C-H arylation protocol.


Subject(s)
Antiviral Agents/chemistry , Benzothiazoles/chemistry , Hepacivirus/drug effects , Pyrimidines/chemistry , Virus Replication/drug effects , Animals , Dogs , Haplorhini , Hepacivirus/physiology , Methylation , Rodentia , Species Specificity
13.
J Med Chem ; 55(1): 489-502, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22098494

ABSTRACT

Cyclic hydroxyamidines were designed and validated as isosteric replacements of the amide functionality. Compounds with these structural motifs were found to be metabolically stable and to possess highly desirable pharmacokinetic profiles. These designs were applied in the identification of γ-secretase modulators leading to highly efficacious agents for reduction of central nervous system Aß(42) in various animal models.


Subject(s)
Amidines/chemical synthesis , Amyloid Precursor Protein Secretases/metabolism , Oxadiazoles/chemical synthesis , Oxazines/chemical synthesis , Amidines/pharmacokinetics , Amidines/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Dogs , HEK293 Cells , Humans , Macaca fascicularis , Male , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Oxazines/pharmacokinetics , Oxazines/pharmacology , Peptide Fragments/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship
14.
Antimicrob Agents Chemother ; 55(8): 3854-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628542

ABSTRACT

Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide, and the current standard of care, a combination of pegylated interferon alpha and ribavirin, is efficacious in achieving sustained viral response in ~50% of treated patients. Novel therapies under investigation include the use of nucleoside analog inhibitors of the viral RNA-dependent RNA polymerase. NM283, a 3'-valyl ester prodrug of 2'-C-methylcytidine, has demonstrated antiviral efficacy in HCV-infected patients (N. Afdhal et al., J. Hepatol. 46[Suppl. 1]:S5, 2007; N. Afdhal et al., J. Hepatol. 44[Suppl. 2]:S19, 2006). One approach to increase the antiviral efficacy of 2'-C-methylcytidine is to increase the concentration of the active inhibitory species, the 5'-triphosphate, in infected hepatocytes. HepDirect prodrug technology can increase intracellular concentrations of a nucleoside triphosphate in hepatocytes by introducing the nucleoside monophosphate into the cell, bypassing the initial kinase step that is often rate limiting. Screening for 2'-C-methylcytidine triphosphate levels in rat liver after oral dosing identified 1-[3,5-difluorophenyl]-1,3-propandiol as an efficient prodrug modification. To determine antiviral efficacy in vivo, the prodrug was administered separately via oral and intravenous dosing to two HCV-infected chimpanzees. Circulating viral loads declined by ~1.4 log(10) IU/ml and by >3.6 log(10) IU/ml after oral and intravenous dosing, respectively. The viral loads rebounded after the end of dosing to predose levels. The results indicate that a robust antiviral response can be achieved upon administration of the prodrug.


Subject(s)
Cytidine/analogs & derivatives , Hepacivirus/drug effects , Hepatitis C/drug therapy , Prodrugs/administration & dosage , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/administration & dosage , Cytidine/pharmacology , Cytidine/therapeutic use , Cytidine Monophosphate/administration & dosage , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/pharmacology , Cytidine Monophosphate/therapeutic use , Female , Hepatitis C/virology , Hepatocytes/metabolism , Macaca mulatta , Male , Pan troglodytes , Prodrugs/pharmacology , Prodrugs/therapeutic use , Pyrimidine Nucleosides/administration & dosage , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/therapeutic use , Rats , Rats, Sprague-Dawley , Viral Load/drug effects
15.
Antimicrob Agents Chemother ; 55(2): 937-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21115793

ABSTRACT

Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection.


Subject(s)
Antiviral Agents/administration & dosage , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Indoles/administration & dosage , Pan troglodytes/virology , Tubercidin/analogs & derivatives , Viral Load/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cyclopropanes , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Hepacivirus/enzymology , Hepacivirus/physiology , Hepatitis C, Chronic/virology , Indoles/pharmacology , Indoles/therapeutic use , Isoindoles , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Sulfonamides , Treatment Outcome , Tubercidin/administration & dosage , Tubercidin/pharmacology , Tubercidin/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors
16.
J Med Chem ; 52(17): 5394-407, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19725579

ABSTRACT

The application of a phosphoramidate prodrug approach to 2'-C-methylcytidine (NM107), the first nucleoside inhibitor of the hepatitis C virus (HCV) NS5B polymerase, is reported. 2'-C-Methylcytidine, as its valyl ester prodrug (NM283), was efficacious in reducing the viral load in patients infected with HCV. Several of the phosphoramidates prepared demonstrated a 10- to 200-fold superior potency with respect to the parent nucleoside in the cell-based replicon assay. This is due to higher levels of 2'-C-methylcytidine triphosphate in the cells. These prodrugs are efficiently activated and converted to the triphosphate in hepatocytes of several species. Our SAR studies ultimately led to compounds that gave high levels of NTP in hamster and rat liver after subcutaneous dosing and that were devoid of the toxic phenol moiety usually found in ProTides.


Subject(s)
Amides/metabolism , Amides/therapeutic use , Antiviral Agents/metabolism , Cytidine/analogs & derivatives , Hepatitis C/drug therapy , Phosphoric Acids/metabolism , Phosphoric Acids/therapeutic use , Prodrugs/metabolism , Prodrugs/therapeutic use , Amides/pharmacology , Amides/toxicity , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cell Line , Cytidine/metabolism , Cytidine/pharmacology , Cytidine/therapeutic use , Cytidine/toxicity , Hepacivirus/drug effects , Hepacivirus/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Phosphoric Acids/pharmacology , Phosphoric Acids/toxicity , Polyphosphates/metabolism , Prodrugs/pharmacology , Prodrugs/toxicity , Structure-Activity Relationship , Virus Replication/drug effects
17.
J Med Chem ; 52(11): 3449-52, 2009 Jun 11.
Article in English | MEDLINE | ID: mdl-19441819

ABSTRACT

Extremely potent very late antigen-4 (VLA-4) antagonists with picomolar, whole blood activity and slow dissociation rates were discovered by incorporating an amino substituent on the proline fragment of the initial lead structure. This level of potency against the unactivated form of VLA-4 was shown to be sufficient to overcome the poor pharmacokinetic profiles typical of this class of VLA-4 antagonists, and sustained activity as measured by receptor occupancy was achieved in preclinical species after oral dosing.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Niacinamide/analogs & derivatives , Phenylalanine/analogs & derivatives , Administration, Oral , Animals , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Dogs , Humans , Inhibitory Concentration 50 , Niacinamide/chemical synthesis , Niacinamide/pharmacokinetics , Niacinamide/pharmacology , Phenylalanine/administration & dosage , Phenylalanine/chemical synthesis , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Rats
18.
Bioorg Med Chem Lett ; 19(6): 1830-4, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19237282

ABSTRACT

A series of novel 1-aminocyclopentyl-3-carboxyamides incorporating substituted tetrahydropyran moieties have been synthesized and subsequently evaluated for their antagonistic activity against the human CCR2 receptor. Among them analog 59 was found to posses potent antagonistic activity.


Subject(s)
Chemistry, Pharmaceutical/methods , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/chemistry , Administration, Oral , Animals , Chemotaxis , Dogs , Drug Design , Humans , Inhibitory Concentration 50 , Macaca mulatta , Models, Chemical , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 19(6): 1623-7, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19233644

ABSTRACT

Platensimycin (1) displays antibacterial activity due to its inhibition of the elongation condensing enzyme (FabF), a novel mode of action that could potentially lead to a breakthrough in developing a new generation of antibiotics. The medicinal chemistry efforts were focused on the modification of the enone moiety of platensimycin and several analogs showed significant activity against FabF and possess antibacterial activity.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , Adamantane/chemical synthesis , Aminobenzoates/chemical synthesis , Anilides/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , Adamantane/pharmacology , Aminobenzoates/pharmacology , Anilides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Crystallography, X-Ray/methods , Drug Design , Drug Resistance, Microbial , Enterococcus faecalis/metabolism , Inhibitory Concentration 50 , Methicillin/pharmacology , Microbial Sensitivity Tests , Models, Chemical , Molecular Structure , Streptomyces/metabolism , Structure-Activity Relationship
20.
Antimicrob Agents Chemother ; 53(3): 926-34, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19075052

ABSTRACT

Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide and is associated with an increased incidence of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Currently approved therapies to treat HCV infection consist of combinations of pegylated alpha interferon and ribavirin which result in a sustained viral response in 40 to 60% of patients. Efforts to develop improved therapies include the development of direct inhibitors of virally encoded enzymes such as the viral RNA-dependent RNA polymerase. A nucleoside analog, 2'-C-methyl-7-deaza-adenosine (MK-0608), has been shown to inhibit viral RNA replication in the subgenomic HCV genotype 1b replicon, with a 50% effective concentration (EC(50)) of 0.3 microM (EC(90) = 1.3 microM). To determine efficacy in vivo, MK-0608 was administered to HCV-infected chimpanzees, resulting in dose- and time-dependent decreases in plasma viral loads. In separate experiments, chimpanzees dosed for 7 days with MK-0608 at 0.2 and 2 mg per kg of body weight per day by intravenous administration experienced average reductions in viral load of 1.0 and >5 log(10) IU/ml, respectively. Two other HCV-infected chimpanzees received daily doses of 1 mg MK-0608 per kg via oral administration. After 37 days of oral dosing, one chimpanzee with a high starting viral load experienced a reduction in viral load of 4.6 log(10), and the viral load in the other chimpanzee fell below the limit of quantification (LOQ) of the HCV TaqMan assay (20 IU/ml). Importantly, viral load remained below the LOQ throughout the duration of dosing and for at least 12 days after dosing ended. The results demonstrate a robust antiviral effect on the administration of MK-0608 to HCV-infected chimpanzees.


Subject(s)
Antiviral Agents/administration & dosage , Hepacivirus/drug effects , Hepatitis C/drug therapy , Nucleosides/administration & dosage , Tubercidin/analogs & derivatives , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Area Under Curve , Dose-Response Relationship, Drug , Drug Administration Schedule , Hepacivirus/genetics , Hepatitis C/blood , Hepatitis C/virology , Inhibitory Concentration 50 , Molecular Structure , Nucleosides/chemistry , Nucleosides/pharmacokinetics , Nucleosides/pharmacology , Nucleosides/therapeutic use , Pan troglodytes , RNA, Viral/blood , Time Factors , Tubercidin/administration & dosage , Tubercidin/chemistry , Tubercidin/pharmacokinetics , Tubercidin/pharmacology , Tubercidin/therapeutic use , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...