Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
NPJ Microgravity ; 10(1): 75, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982119

ABSTRACT

The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.

2.
Drug Metab Dispos ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744527

ABSTRACT

To further the development of an in vitro model which faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from three donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell® inserts, and confirmed transformation into a largely enterocyte population via RNA-seq analysis and immunocytochemical (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins. Enteroid monolayer barrier integrity was demonstrated by elevated transepithelial electrical resistance (TEER) that stabilized after 10 days in culture and persisted for 42 days. These results were corroborated by low paracellular transport probe permeability at 7 and 21 days in culture. The activity of a prominent drug metabolizing enzyme, CYP3A, was confirmed at 7, 21, and 42 days culture under basal, 1α,25(OH)2 vitamin D3-induced, and 6',7'-dihydroxybergamottin-inhibited conditions. The duration of these experiments is particularly noteworthy, as this is the first study assessing drug metabolizing enzymes and transporters (DMET) expression/function for enteroids cultured for greater than 12 days. The sum of these results suggests enteroid monolayers are a promising ex vivo model to investigate and quantitatively predict an orally administered drug's intestinal absorption and/or metabolism. Significance Statement This study presents a novel ex vivo model of the human intestine, human intestinal organoid (enteroid) monolayers, that maintain barrier function and metabolic functionality for up to 42-days in culture. The incorporation of both barrier integrity and metabolic function over an extended period within the same model is an advancement over historically used in vitro systems, which either lack one or both of these attributes or have limited viability.

3.
Glomerular Dis ; 4(1): 49-63, 2024.
Article in English | MEDLINE | ID: mdl-38600956

ABSTRACT

Background: The first spatially resolved transcriptomics platforms, GeoMx (Nanostring) and Visium (10x Genomics) were launched in 2019 and were recognized as the method of the year by Nature Methods in 2020. The subsequent refinement and expansion of these and other technologies to increase -plex, work with formalin-fixed paraffin-embedded tissue, and analyze protein in addition to gene expression have only added to their significance and impact on the biomedical sciences. In this perspective, we focus on two platforms for spatial transcriptomics, GeoMx and Visium, and how these platforms have been used to provide novel insight into kidney disease. The choice of platform will depend largely on experimental questions and design. The application of these technologies to clinically sourced biopsies presents the opportunity to identify specific tissue biomarkers that help define disease etiology and more precisely target therapeutic interventions in the future. Summary: In this review, we provide a description of the existing and emerging technologies that can be used to capture spatially resolved gene and protein expression data from tissue. These technologies have provided new insight into the spatial heterogeneity of diseases, how reactions to disease are distributed within a tissue, which cells are affected, and molecular pathways that predict disease and response to therapy. Key Message: The upcoming years will see intense use of spatial transcriptomics technologies to better define the pathophysiology of kidney diseases and develop novel diagnostic tests to guide personalized treatments for patients.

4.
Psychoneuroendocrinology ; 163: 106994, 2024 May.
Article in English | MEDLINE | ID: mdl-38387218

ABSTRACT

Placental corticotropin-releasing hormone (pCRH) is a neuroactive peptide produced in high concentrations in mid-late pregnancy, during key periods of fetal brain development. Some evidence suggests that higher pCRH exposure during gestation is associated with adverse neurodevelopment, particularly in female offspring. In 858 mother-child dyads from the sociodemographically diverse CANDLE cohort (Memphis, TN), we examined: (1) the slope of pCRH rise in mid-late pregnancy and (2) estimated pCRH at delivery as a measure of cumulative prenatal exposure. When children were 4 years-old, mothers reported on problem behaviors using the Child Behavior Checklist (CBCL) and cognitive performance was assessed by trained psychologists using the Stanford-Binet Intelligence Scales. We fitted linear regression models examining pCRH in relation to behavioral and cognitive performance measures, adjusting for covariates. Using interaction models, we evaluated whether associations differed by fetal sex, breastfeeding, and postnatal neighborhood opportunity. In the full cohort, log-transformed pCRH measures were not associated with outcomes; however, we observed sex differences in some models (interaction p-values≤0.01). In male offspring, an interquartile (IQR) increase in pCRH slope (but not estimated pCRH at delivery), was positively associated with raw Total (ß=3.06, 95%CI: 0.40, 5.72), Internalizing (ß=0.89, 95%CI: 0.03, 1.76), and Externalizing (ß=1.25, 95%CI: 0.27, 2.22) Problem scores, whereas, in females, all associations were negative (Total Problems: ß=-1.99, 95%CI: -3.89, -0.09; Internalizing: ß=-0.82, 95%CI: -1.42, -0.23; Externalizing: ß=-0.56, 95%CI: -1.34, 0.22). No associations with cognitive performance were observed nor did we observe moderation by breastfeeding or postnatal neighborhood opportunity. Our results provide further evidence that prenatal pCRH exposure may impact subsequent child behavior in sex-specific ways, however in contrast to prior studies suggesting adverse impacts in females, steeper mid-gestation pCRH rise was associated with more problem behaviors in males, but fewer in females.


Subject(s)
Prenatal Exposure Delayed Effects , Problem Behavior , Humans , Pregnancy , Female , Male , Child, Preschool , Corticotropin-Releasing Hormone , Placenta , Fetal Development , Prenatal Care
5.
Mol Psychiatry ; 29(4): 1179-1191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212375

ABSTRACT

Prenatal exposure to maternal psychological stress is associated with increased risk for adverse birth and child health outcomes. Accumulating evidence suggests that preconceptional maternal stress may also be transmitted intergenerationally to negatively impact offspring. However, understanding of mechanisms linking these exposures to offspring outcomes, particularly those related to placenta, is limited. Using RNA sequencing, we identified placental transcriptomic signatures associated with maternal prenatal stressful life events (SLEs) and childhood traumatic events (CTEs) in 1 029 mother-child pairs in two birth cohorts from Washington state and Memphis, Tennessee. We evaluated individual gene-SLE/CTE associations and performed an ensemble of gene set enrichment analyses combing across 11 popular enrichment methods. Higher number of prenatal SLEs was significantly (FDR < 0.05) associated with increased expression of ADGRG6, a placental tissue-specific gene critical in placental remodeling, and decreased expression of RAB11FIP3, an endocytosis and endocytic recycling gene, and SMYD5, a histone methyltransferase. Prenatal SLEs and maternal CTEs were associated with gene sets related to several biological pathways, including upregulation of protein processing in the endoplasmic reticulum, protein secretion, and ubiquitin mediated proteolysis, and down regulation of ribosome, epithelial mesenchymal transition, DNA repair, MYC targets, and amino acid-related pathways. The directional associations in these pathways corroborate prior non-transcriptomic mechanistic studies of psychological stress and mental health disorders, and have previously been implicated in pregnancy complications and adverse birth outcomes. Accordingly, our findings suggest that maternal exposure to psychosocial stressors during pregnancy as well as the mother's childhood may disrupt placental function, which may ultimately contribute to adverse pregnancy, birth, and child health outcomes.


Subject(s)
Placenta , Prenatal Exposure Delayed Effects , Stress, Psychological , Transcriptome , Humans , Female , Pregnancy , Transcriptome/genetics , Stress, Psychological/metabolism , Stress, Psychological/genetics , Placenta/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Adult , Male , Cohort Studies
6.
Diabetes Care ; 47(3): 471-475, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38153877

ABSTRACT

OBJECTIVE: To identify plasma miRNAs related to treatment failure in youth with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We examined whether a panel of miRNAs could predict treatment failure in training/test data sets among participants in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study (N = 209). We also examined whether individual miRNAs were associated with treatment failure. RESULTS: Participants were age 14.5 years, and 62% were female. A panel of miRNAs did not predict treatment failure. However, for each doubling, miR-4306 was associated with a 12% decrease (P = 0.040) and miR-483-3p was marginally associated with a 12% increase (P = 0.080) in failure independently of sex, race/ethnicity, BMI, Tanner stage, HbA1c, maternal diabetes, oral disposition index, and treatment arm. The addition of both miRNAs improved model fit (log likelihood without vs. with miRNAs -360.3 vs. -363.5; P = 0.040). CONCLUSIONS: miR-483-3p and miR-4306 may be associated with treatment failure in youth with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , MicroRNAs , Pregnancy , Humans , Adolescent , Female , Male , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , MicroRNAs/genetics , Treatment Failure , Ethnicity
7.
J Cyst Fibros ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37949747

ABSTRACT

BACKGROUND: Our objective was to discover novel urinary biomarkers of antibiotic-associated nephrotoxicity using an ex-vivo human microphysiological system (MPS) and to translate these findings to a prospectively enrolled cystic fibrosis (CF) population receiving aminoglycosides and/or polymyxin E (colistin) for a pulmonary exacerbation. METHODS: We populated the MPS with primary human kidney proximal tubule epithelial cells (PTECs) from three donors and modeled nephrotoxin injury through exposure to 50 µg/mL polymyxin E for 72 h. We analyzed gene transcriptional responses by RNAseq and tested MPS effluents. We translated candidate biomarkers to a CF cohort via analysis of urine collected prior to, during and two weeks after antibiotics and patients were followed for a median of 3 years after antibiotic use. RESULTS: Polymyxin E treatment resulted in a statistically significant increase in the pro-apoptotic Fas gene relative to control in RNAseq of MPS: fold-change = 1.63, FDR q-value = 7.29 × 10-5. Effluent analysis demonstrated an acute rise of soluble Fas (sFas) concentrations that correlated with cellular injury. In 16 patients with CF, urinary sFas concentrations were significantly elevated during antibiotic treatment, regardless of development of AKI. Over a median of three years of follow up, we identified seven cases of incident chronic kidney disease (CKD). Urinary sFas concentrations during antibiotic treatment were significantly associated with subsequent development of incident CKD (unadjusted relative risk = 2.02 per doubling of urinary sFas, 95 % CI = 1.40, 2.90, p < 0.001). CONCLUSIONS: Using an ex-vivo MPS, we identified a novel biomarker of proximal tubule epithelial cell injury, sFas, and translated these findings to a clinical cohort of patients with CF.

8.
Placenta ; 138: 75-82, 2023 07.
Article in English | MEDLINE | ID: mdl-37216796

ABSTRACT

INTRODUCTION: Traffic-related air pollution (TRAP), a common exposure, potentially impacts pregnancy through altered placental function. We investigated associations between prenatal TRAP exposure and placental gene expression. METHODS: Whole transcriptome sequencing was performed on placental samples from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle and Yakima, WA) (n = 205), cohorts of the ECHO-PATHWAYS Consortium. Residential NO2 exposures were computed via spatiotemporal models for full-pregnancy, each trimester, and the first/last months of pregnancy. Individual cohort-specific, covariate-adjusted linear models were fit for 10,855 genes and respective exposures (NO2 or roadway proximity [≤150 m]). Infant-sex/exposure interactions on placental gene expression were tested with interaction terms in separate models. Significance was based on false discovery rate (FDR<0.10). RESULTS: In GAPPS, final-month NO2 exposure was positively associated with MAP1LC3C expression (FDR p-value = 0.094). Infant-sex interacted with second-trimester NO2 on STRIP2 expression (FDR interaction p-value = 0.011, inverse and positive associations among male and female infants, respectively) and roadway proximity on CEBPA expression (FDR interaction p-value = 0.045, inverse among females). In CANDLE, infant-sex interacted with first-trimester and full-pregnancy NO2 on RASSF7 expression (FDR interaction p-values = 0.067 and 0.013, respectively, positive among male infants and inverse among female infants). DISCUSSION: Overall, pregnancy NO2 exposure and placental gene expression associations were primarily null, with exception of final month NO2 exposure and placental MAP1LC3C association. We found several interactions of infant sex and TRAP exposures on placental expression of STRIP2, CEBPA, and RASSF7. These highlighted genes suggest influence of TRAP on placental cell proliferation, autophagy, and growth, though additional replication and functional studies are required for validation.


Subject(s)
Air Pollutants , Prenatal Exposure Delayed Effects , Humans , Male , Female , Pregnancy , Placenta/chemistry , Air Pollutants/toxicity , Nitrogen Dioxide/analysis , Prenatal Exposure Delayed Effects/genetics , Maternal Exposure/adverse effects , Gene Expression
9.
Arch Toxicol ; 97(3): 831-847, 2023 03.
Article in English | MEDLINE | ID: mdl-36695872

ABSTRACT

Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Male , Pregnancy , Female , Humans , Placenta , Trophoblasts , Transcriptome , Phthalic Acids/metabolism
10.
Environ Health Perspect ; 130(9): 97003, 2022 09.
Article in English | MEDLINE | ID: mdl-36102641

ABSTRACT

BACKGROUND: The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES: This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS: Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS: Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION: In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.


Subject(s)
Kainic Acid , Neurotoxicity Syndromes , Animals , Cytokines , Female , Kainic Acid/analogs & derivatives , Kainic Acid/toxicity , Macaca fascicularis , Marine Toxins/toxicity
11.
Clin Epigenetics ; 14(1): 87, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35836289

ABSTRACT

BACKGROUND: Maternal stress before, during and after pregnancy has profound effects on the development and lifelong function of the infant's neurocognitive development. We hypothesized that the programming of the central nervous system (CNS), hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) induced by prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find noninvasive epigenetic biomarkers of PS in the newborn salivary DNA. RESULTS: A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also administered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive coupling between maternal and fetal heart rates resulting in a 'Fetal Stress Index' (FSI). Upon delivery, we collected maternal hair strands for cortisol measurements and newborn's saliva for epigenetic analyses. DNA was extracted from saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures PDQ and cortisol were found: DAXX and ARL4D. CONCLUSIONS: Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such noninvasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step in the prevention of future health problems, reducing their personal and societal impact.


Subject(s)
Fetal Diseases , Prenatal Exposure Delayed Effects , Biomarkers , Child , DNA Methylation , Epigenome , Female , Fetal Diseases/genetics , Humans , Hydrocortisone/analysis , Infant , Infant, Newborn , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Saliva/chemistry , Vesicular Transport Proteins/genetics
12.
Mol Cell Endocrinol ; 554: 111723, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35843386

ABSTRACT

BACKGROUND: Insulin resistance (IR) and central obesity are common in polycystic ovary syndrome (PCOS), but pathomechanisms for IR in PCOS are not established. Circulating microRNAs (miRNAs) are non-invasive biomarkers of epigenetic regulation that may contribute to the pathogenesis of IR and central adiposity in PCOS. METHODS: We conducted a pilot study to examine associations of circulating miRNAs with IR and central adiposity among women with PCOS (n = 11) using high-throughput miRNA sequencing. We fit generalized linear models examining associations of waist circumference and HOMA-IR with plasma miRNAs. We used false discovery rate (FDR)-adjusted cutoff p < 0.1 to correct for multiple testing. We used miRDB's Gene Ontology (GO) tool to identify predicted pathways for top hits. RESULTS: Mean age and BMI of participants were 27.9 years and 32.5 kg/m2, respectively. Lower levels of miR-1294 were associated with higher waist circumference (ß = -0.10, FDR = 0.095). While no miRNAs were associated with HOMA-IR at our FDR cut off <0.1, 11 miRNAs were associated with waist circumference and 14 miRNAs with HOMA-IR at unadjusted p < 0.01, including members of the highly conserved miR-17/92 cluster and miR-1294 (ß = -0.10, p < 0.001). The GO analysis of miR-1294 identified 54 overrepresented pathways, including "negative regulation of insulin receptor signaling" (FDR = 0.019), and 6 underrepresented pathways. CONCLUSIONS: Plasma miR-1294 along with members of the miR-17/92 cluster and miRNAs involved in insulin signaling may be associated with central obesity and insulin resistance in PCOS. Larger studies among women with and without PCOS are needed to validate these findings.


Subject(s)
Insulin Resistance , MicroRNAs , Polycystic Ovary Syndrome , Epigenesis, Genetic , Female , Humans , Insulin Resistance/genetics , MicroRNAs/metabolism , Obesity/complications , Obesity, Abdominal , Pilot Projects , Waist Circumference
13.
Analyst ; 147(8): 1611-1621, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35293916

ABSTRACT

Neurodevelopment is an intricately orchestrated program of cellular events that occurs with tight temporal and spatial regulation. While it is known that the development and proper functioning of the brain, which is the second most lipid rich organ behind adipose tissue, greatly rely on lipid metabolism and signaling, the temporal lipidomic changes that occur throughout the course of neurodevelopment have not been investigated. Smith-Lemli-Opitz syndrome is a metabolic disorder caused by genetic mutations in the DHCR7 gene, leading to defective 3ß-hydroxysterol-Δ7-reductase (DHCR7), the enzyme that catalyzes the last step of the Kandutsch-Russell pathway of cholesterol synthesis. Due to the close regulatory relationship between sterol and lipid homeostasis, we hypothesize that altered or dysregulated lipid metabolism beyond the primary defect of cholesterol biosynthesis is present in the pathophysiology of SLOS. Herein, we applied our HILIC-IM-MS method and LiPydomics Python package to streamline an untargeted lipidomics analysis of developing mouse brains in both wild-type and Dhcr7-KO mice, identifying lipids at Level 3 (lipid species level: lipid class/subclass and fatty acid sum composition). We compared relative lipid abundances throughout development, from embryonic day 12.5 to postnatal day 0 and determined differentially expressed brain lipids between wild-type and Dhcr7-KO mice at specific developmental time points, revealing lipid metabolic pathways that are affected in SLOS beyond the cholesterol biosynthesis pathway, such as glycerolipid, glycerophospholipid, and sphingolipid metabolism. Implications of the altered lipid metabolic pathways in SLOS pathophysiology are discussed.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Smith-Lemli-Opitz Syndrome , Animals , Brain/metabolism , Cholesterol/metabolism , Lipidomics , Lipids , Mice , Smith-Lemli-Opitz Syndrome/genetics , Smith-Lemli-Opitz Syndrome/metabolism
14.
Epigenetics ; 17(3): 297-313, 2022 03.
Article in English | MEDLINE | ID: mdl-33818294

ABSTRACT

Air pollution might affect atherosclerosis through DNA methylation changes in cells crucial to atherosclerosis, such as monocytes. We conducted an epigenome-wide study of DNA methylation in CD14+ monocytes and long-term ambient air pollution exposure in adults participating in the Multi-Ethnic Study of Atherosclerosis (MESA). We also assessed the association between differentially methylated signals and cis-gene expression. Using spatiotemporal models, one-year average concentrations of outdoor fine particulate matter (PM2.5) and oxides of nitrogen (NOX) were estimated at participants' homes. We assessed DNA methylation and gene expression using Illumina 450k and HumanHT-12 v4 Expression BeadChips, respectively (n = 1,207). We used bump hunting and site-specific approaches to identify differentially methylated signals (false discovery rate of 0.05) and used linear models to assess associations between differentially methylated signals and cis-gene expression. Four differentially methylated regions (DMRs) located on chromosomes 5, 6, 7, and 16 (within or near SDHAP3, ZFP57, HOXA5, and PRM1, respectively) were associated with PM2.5. The DMRs on chromosomes 5 and 6 also associated with NOX. The DMR on chromosome 5 had the smallest p-value for both PM2.5 (p = 1.4×10-6) and NOX (p = 7.7×10-6). Three differentially methylated CpGs were identified for PM2.5, and cg05926640 (near TOMM20) had the smallest p-value (p = 5.6×10-8). NOX significantly associated with cg11756214 within ZNF347 (p = 5.6×10-8). Several differentially methylated signals were also associated with cis-gene expression. The DMR located on chromosome 7 was associated with the expression of HOXA5, HOXA9, and HOXA10. The DMRs located on chromosomes 5 and 16 were associated with expression of MRPL36 and DEXI, respectively. The CpG cg05926640 was associated with expression of ARID4B, IRF2BP2, and TOMM20. We identified differential DNA methylation in monocytes associated with long-term air pollution exposure. Methylation signals associated with gene expression might help explain how air pollution contributes to cardiovascular disease.


Subject(s)
Air Pollutants , Air Pollution , Atherosclerosis , Adult , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Antigens, Neoplasm/analysis , Atherosclerosis/chemically induced , Atherosclerosis/genetics , DNA Methylation , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Epigenome , Humans , Monocytes , Neoplasm Proteins , Particulate Matter/toxicity
15.
iScience ; 24(11): 103269, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34849462

ABSTRACT

Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.

17.
Neurotoxicol Teratol ; 87: 107010, 2021.
Article in English | MEDLINE | ID: mdl-34216730

ABSTRACT

Paraoxonase 2 (PON2) is an intracellular antioxidant enzyme shown to play an important role in mitigating oxidative stress in the brain. Oxidative stress is a common mechanism of toxicity for neurotoxicants and is increasingly implicated in the etiology of multiple neurological diseases. While PON2 deficiency increases oxidative stress in the brain in-vitro, little is known about its effects on behavior in-vivo and what global transcript changes occur from PON2 deficiency. We sought to characterize the effects of PON2 deficiency on behavior in mice, with an emphasis on locomotion, and evaluate transcriptional changes with RNA-Seq. Behavioral endpoints included home-cage behavior (Noldus PhenoTyper), motor coordination (Rotarod) and various gait metrics (Noldus CatWalk). Home-cage behavior analysis showed PON2 deficient mice had increased activity at night compared to wildtype controls and spent more time in the center of the cage, displaying a possible anxiolytic phenotype. PON2 deficient mice had significantly shorter latency to fall when tested on the rotarod, suggesting impaired motor coordination. Minimal gait alterations were observed, with decreased girdle support posture noted as the only significant change in gait with PON2 deficiency. Beyond one home-cage metric, no significant sex-based behavioral differences were found in this study. Finally, A subset of samples were utilized for RNA-Seq analysis, looking at three discrete brain regions: cerebral cortex, striatum, and cerebellum. Highly regional- and sex-specific changes in RNA expression were found when comparing PON2 deficient and wildtype mice, suggesting PON2 may play distinct regional roles in the brain in a sex-specific manner. Taken together, these findings demonstrates that PON2 deficiency significantly alters the brain on both a biochemical and phenotypic level, with a specific impact on motor function. These data have implications for future gene-environment toxicological studies and warrants further investigation of the role of PON2 in the brain.


Subject(s)
Aryldialkylphosphatase/deficiency , Behavior, Animal/physiology , Brain/metabolism , Motor Activity/physiology , Animals , Aryldialkylphosphatase/genetics , Corpus Striatum/metabolism , Female , Male , Mice , Motor Activity/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Sex Characteristics
18.
Sci Rep ; 11(1): 5305, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674671

ABSTRACT

Preterm birth remains the leading identifiable risk factor for cerebral palsy (CP), a devastating form of motor impairment due to developmental brain injury occurring around the time of birth. We performed genome wide methylation and whole transcriptome analyses to elucidate the early pathogenesis of CP in extremely low gestational age neonates (ELGANs). We evaluated peripheral blood cell specimens collected during a randomized trial of erythropoietin for neuroprotection in the ELGAN (PENUT Trial, NCT# 01378273). DNA methylation data were generated from 94 PENUT subjects (n = 47 CP vs. n = 47 Control) on day 1 and 14 of life. Gene expression data were generated from a subset of 56 subjects. Only one differentially methylated region was identified for the day 1 to 14 change between CP versus no CP, without evidence for differential gene expression of the associated gene RNA Pseudouridine Synthase Domain Containing 2. iPathwayGuide meta-analyses identified a relevant upregulation of JAK1 expression in the setting of decreased methylation that was observed in control subjects but not CP subjects. Evaluation of whole transcriptome data identified several top pathways of potential clinical relevance including thermogenesis, ferroptossis, ribosomal activity and other neurodegenerative conditions that differentiated CP from controls.


Subject(s)
Cerebral Palsy/genetics , Infant, Extremely Premature , Premature Birth/genetics , DNA Methylation , Female , Humans , Male , Transcriptome
20.
Sci Data ; 7(1): 192, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561870

ABSTRACT

Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation in the methyl-CpG-binding protein 2 gene (MECP2) in the majority of cases. We describe an RNA sequencing dataset of postmortem brain tissue samples from four females clinically diagnosed with Rett syndrome and four age-matched female donors. The dataset contains 16 transcriptomes, including two brain regions, temporal and cingulate cortex, for each individual. We compared our dataset with published transcriptomic analyses of postmortem brain tissue from Rett syndrome and found consistent gene expression alterations among regions of the cerebral cortex. Our data provide a valuable resource to explore the biology of the human brain in Rett syndrome.


Subject(s)
Gyrus Cinguli/metabolism , Rett Syndrome/metabolism , Temporal Lobe/metabolism , Transcriptome , Cadaver , Female , Humans , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...