Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 104(7): e4098, 2023 07.
Article in English | MEDLINE | ID: mdl-37258300

ABSTRACT

Many studies have focused on vegetation across forest edges to study impacts of edges created by human activities on forest structure and composition, or patterns of vegetation at inherent natural edges. Our objective was to create a database of plant-related variables across different types of edges from various studies (mainly from across Canada, but also in Brazil and Belize) to facilitate edge research. We compiled data on vegetation along more than 300 transects perpendicular to forest edges adjacent to clear-cuts, burned areas, bogs, lakes, barrens, insect disturbances, and riparian areas from 24 studies conducted over the past three decades. Data were compiled for more than 400 plant species and forest structure variables (e.g., trees, logs, canopy cover). All data were collected with a similar sampling design of quadrats along transects perpendicular to forest edges, but with varying numbers of transects and quadrats, and distances from the edge. The purpose for most of the studies was either to determine the distance of edge influence (edge width) or to explore the pattern of vegetation along the edge to interior gradient. We provide data tables for the cover of plant species and functional groups, the species and size of live and dead trees, the density of saplings, maximum height of functional groups and shrub species, and the cover of functional groups at different heights (vertical distribution of vegetation). The Forest Edge Research Network (FERN) database provides extensive data on many variables that can be used for further study including meta-analyses and can assist in answering questions important to conservation efforts (e.g., how is distance of edge influence from created edges affected by different factors?). We plan to expand this database with subsequent studies from the authors and we invite others to contribute to make this a more global database. The data are released under a CC0 license. When using these data, we ask that you cite this data paper and any relevant publications listed in our metadata file. We also encourage you to contact the first author if you are planning to use or contribute to this database.


Subject(s)
Forests , Animals , Humans , Insecta , Trees , Wetlands
2.
Ecology ; 103(11): e3805, 2022 11.
Article in English | MEDLINE | ID: mdl-35796420

ABSTRACT

As boreal forests rapidly warm due to anthropogenic climate change, long-term baseline community data are needed to effectively characterize the corresponding ecological changes that are occurring in these forests. The combined seasonal dynamics (SEADYN) and annual dynamics (ANNDYN) data set, which documents the vegetative changes in boreal forests during the snow-free period, is one such source of baseline community data. These data were collected by George H. La Roi and colleagues in Alberta, Canada from 1980 to 2015 within permanent sampling plots established in the Hondo-Slave Lake area (eight stands; 1980-2015) in central Alberta and the Athabasca Oil Sands (AOS) region (17 stands; 1981-1984) near Fort McMurray in northeastern Alberta. Various data were collected, with temporal and spatial coverage differing by data set. These data sets include, but are not limited to, cover of each identified vascular plant and bryoid (moss, liverwort, and lichen) species; forest mensuration; forest litter production; and soil temperature and moisture. Notably, permanent sampling plots were set up as a grid, which will facilitate analyses of spatial relations. These data can be used to analyze long-term changes in seasonal dynamics and succession within boreal forest communities and serve as a baseline for comparison with future forest conditions in unmanaged, managed, and reclaimed forests. Data are released under a CC-BY license; please cite this data paper when using the data for analyses.


Subject(s)
Forests , Oil and Gas Fields , Taiga , Alberta , Plants , Seasons , Trees
3.
Sci Total Environ ; 696: 133877, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31442720

ABSTRACT

Atmospheric acid deposition is of major concern in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada, which is home to the third largest oil reserve in the world. After decades of oil sands production in the AOSR, the potential impact of deposition on forest health, including tree growth and understory biodiversity, is still not clear. We evaluated the relationship of modelled/interpolate atmospheric deposition of nitrogen (N), sulphur (S), base cations (BC), and derived potential acid input (PAI) from surface oil sands mining with: (1) the radial growth (i.e. basal area increment; BAI) of jack pine (Pinus banksiana Lamb.) trees using data from two decadal time periods, prior to (1957-1966) and during (2001-2010) active oil sands development in the AOSR; and (2) forest understory vegetation (abundance, diversity, and composition), which is an important component of forest biodiversity. BAI of jack pine trees varied with N, S, and BC deposition between the two time periods, and with the direction of the site relative to main emission sources. Growth was higher in areas close to the oil sands surface mining operations prior to and after oil sands development. BAI was also positively related to atmospheric deposition in the recent period, but these relationships were weaker in the active period versus the non-active period. Understory vegetation - including vascular plant cover, richness, and diversity - increased in relation to modelled atmospheric N and S deposition. There was limited correlation between soil pH or the BC:Al ratio (indicators of soil acidification) and BAI and understory vegetation responses. No evidence was found for detrimental effects of atmospheric emissions (and subsequent deposition) from oil sands production on tree growth or forest understory vegetation. The results, if anything, suggest a fertilization effect due to enhanced atmospheric deposition of nitrogen compounds.


Subject(s)
Acid Rain/analysis , Air Pollutants/analysis , Environmental Monitoring , Forests , Oil and Gas Fields , Trees/growth & development , Alberta , Atmosphere
4.
Front Plant Sci ; 9: 858, 2018.
Article in English | MEDLINE | ID: mdl-29988528

ABSTRACT

Given the habitat moisture (air humidity or soil moisture) preferences of many forest bryophytes, we explored whether the depth-to-water (DTW) index, derived from remotely sensed Light Detection and Ranging (LiDAR) data, was related to fine-scale patterns of spatial variation in bryophyte abundance, diversity, and composition. The goal was to assess the utility of the topographic DTW index as a tool to decipher trends in bryophyte assemblages along a site wetness gradient in the boreal mixedwood forest. Discrete Airborne Laser Scanning (ALS) data were acquired over the entire Ecosystem Management Emulating Natural Disturbance (EMEND) experimental site located in northwestern Alberta, Canada (56° 46' 13″ N, 118° 22' 28″ W), based on which we calculated a mathematical index of approximate depth to water at or below the soil surface at 1 m resolution using the Wet-Areas Mapping model. Bryophytes (mosses and liverworts) were sampled in permanent sample plots in unmanaged forest stands of varying dominant canopy tree composition. The relationships between DTW and bryophyte cover, richness, diversity, and composition in broadleaf (deciduous)-, mixed, and conifer-dominated boreal forest stands were analyzed using linear mixed-effect models and multivariate analyses. Bryophyte cover was highest in conifer-dominated forest, which occupied the wetter end of the DTW gradient, followed by mixed forest, whereas broadleaf forest, which occupied the drier end of the DTW gradient, had the lowest cover but highest bryophyte diversity. Bryophyte cover in conifer-dominated forests was positively related to site moisture (negatively related to the DTW index). In contrast, bryophyte species richness and diversity were negatively related to site moisture (increased at higher DTW values) in all forest types. DTW explained significant variation in bryophyte species composition in mixed forests, while indicator species analysis identified species with preferences for wet, moist, and dry site conditions in each forest type. Our results corroborate the importance of site moisture as a driver of bryophyte assemblages but, interestingly, there were important differences among forest types, which themselves are distributed across a gradient of site moisture. Our study demonstrates the utility of the topographic DTW index for understanding fine-scale (plot-level) variation in bryophyte assemblages in forested landscapes.

5.
Ecol Appl ; 28(7): 1830-1840, 2018 10.
Article in English | MEDLINE | ID: mdl-29992697

ABSTRACT

Retention harvesting (also called tree retention or structural retention), in which live mature trees are selectively retained within harvested stands at different retention levels and in different patterns (aggregated to dispersed), is increasingly being used to mitigate the negative impacts of forest harvesting on biodiversity. However, the effectiveness of combining different patterns of retention harvesting for conservation and recovery of understory vascular plants in the long term is largely unknown. To address this gap, we compared understory vascular plant diversity, abundance, and composition between aggregated retention and five levels of surrounding dispersed retention (0% [clearcut], 10%, 20%, 50%, 75%) 15 yr postharvest. We also investigated the influence of dispersed retention on the ability of embedded retention patches to support plant communities characteristic of unharvested forests, and whether it varies by patch size of aggregated retention (0.20 ha or 0.46 ha) and position within patches (edge or interior). Species richness, diversity, and cover were higher in the dispersed retention than in the patch retention as the harvested areas favored early-seral plant species. Graminoid cover was greater at the edges than in the interior of large patches. Retention patches as small as 0.2 ha more effectively supported shade-tolerant (forest interior) plant communities when they were surrounded by higher levels of dispersed retention (as compared to patches retained within clearcuts). Overall, the combined use of both aggregated and dispersed retention within a given cutblock benefits both late- and early-seral plant species and thus could effectively conserve understory plant assemblages in harvested landscapes. Sustainable forest management should therefore consider using a range of retention patch sizes combined with varying levels of surrounding dispersed retention in harvest designs to achieve objectives for plant conservation.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Forestry/methods , Forests , Trees , Alberta
6.
Ecol Appl ; 26(5): 1486-1502, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27755757

ABSTRACT

Understanding processes driving mortality in forests is important for comprehension of natural stand dynamics and for informing natural disturbance-based ecosystem management. There has been considerable study of mortality in forests during the self-thinning phase but we know much less about processes driving mortality in stands at later successional stages. We addressed this through study of five 1-ha spatially explicit permanent plots in mature (111-186 yr old in 2012) Pinus contorta stands in the Canadian Rocky Mountains using data from repeated measurements over a 45-yr period, dendrochronological information, and point pattern analysis. We tested the hypothesis that these stands had completed the self-thinning/density-dependent mortality stage of succession. Contrary to our expectations, the self-thinning phase can persist for more than 140 yr following stand establishment. Our findings suggest this was attributable to prolonged post-fire establishment periods due to surface fires in three of the plots while in the other two plots moist conditions and slow growth most likely delayed the onset of competition. Several pieces of evidence indicated the importance of density-dependent mortality in these stands over the study period: (1) The diameter distribution of individuals changed from initially right-skewed toward normality as a result of mortality of smaller-diameter stems. (2) Individuals of lower canopy positions were proportionally more affected by mortality. (3) When compared to the pre-mortality pattern, surviving stems in all stands had an increasingly uniform spatial distribution. In two of the plots, recent windthrow and/or ingrowth initially hindered our ability to detect density-dependent mortality but our dendrochronological sampling and permanent plot data allowed us to untangle the different processes at play; in doing so we demonstrate for the first time how density-independent processes can mask underlying density-dependent mortality processes in older stands. Mortality of larger dominant canopy trees increased over the study period and mortality of dominant stems was a random process in all stands suggesting these stands were approaching the end of the self-thinning stage and that density-independent processes might soon become more important. Our results provide an improved understanding of mortality processes that can be applied to natural disturbance-based ecosystem management.


Subject(s)
Environmental Monitoring , Forestry , Forests , Tracheophyta/physiology , Biodiversity , Endangered Species , Population Density , Wood
7.
PLoS One ; 11(3): e0151436, 2016.
Article in English | MEDLINE | ID: mdl-26975055

ABSTRACT

Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.


Subject(s)
Ecosystem , Forests , Pinus/physiology , Bacteria/metabolism , Biomarkers/metabolism , Phospholipids/metabolism , Species Specificity
8.
Tree Physiol ; 23(8): 545-52, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12730046

ABSTRACT

Black spruce (Picea mariana (Mill.) BSP) and tamarack (Larix laricina (Du Roi) K. Koch) are the predominant tree species in the boreal peatlands of Alberta, Canada, where low nutrient availability, low soil temperature and a high water table limit their growth. Effects of flooding for 28 days on morphological and physiological responses were investigated in greenhouse-grown black spruce and tamarack seedlings in a growth chamber. Flooding reduced root hydraulic conductance, net assimilation rate and stomatal conductance, and increased water-use efficiency (WUE) and needle electrolyte leakage in both species. Although flooded black spruce seedlings maintained higher net assimilation rates and stomatal conductance than flooded tamarack seedlings, flooded tamarack seedlings were able to maintain higher root hydraulic conductance than flooded black spruce seedlings. Needles of flooded black spruce developed tip necrosis and electrolyte leakage after 14 days of flooding, and these symptoms were subsequently more prominent than in needles of flooded tamarack seedlings. Flooded tamarack seedlings exhibited no visible injury symptoms and developed hypertrophied lenticels at their stem base. Application of exogenous ethylene resulted in a significant reduction in net assimilation, stomatal conductance and root respiration, whereas root hydraulic conductivity increased in both species. Thus, although flooded black spruce seedlings maintained a higher stomatal conductance and net assimilation rate than tamarack seedlings, black spruce did not cope with the deleterious effects of prolonged soil flooding and exogenous ethylene as well as tamarack.


Subject(s)
Ethylenes/pharmacology , Larix/physiology , Picea/physiology , Trees/physiology , Environment , Larix/drug effects , Picea/drug effects , Trees/drug effects , Water
9.
Oecologia ; 91(2): 184-191, 1992 Aug.
Article in English | MEDLINE | ID: mdl-28313455

ABSTRACT

This study evaluated the contribution of different ages of foliage to the nutrient and carbon balance of black spruce (Picea mariana (Mill.) B.S.P.) from a nutrient-poor peatland in Alberta. Seasonal patterns of foliar nitrogen and phosphorus concentration and content were examined in six needle cohorts up to 10 years old. Trees were treated to simulate excess nutrient deficiency (removal of all one-year-old foliage), nutrient excess (fertilized with 250, 50, 100 kg ha-1 NPK split application in June and July), or left as controls. Gas exchange (net assimilation-Na, stomatal conductance-gs, mesophyll conductance-gm, water-use efficiency-WUE, dark respiration-RS) was measured on six different needle cohorts in several control trees in 1989 and 1990. Nitrogen and phosphorus concentration decreased with needle age. Foliar nutrient concentration fell from April to June and then was stable until September except for the fertilized trees where it increased. There was no evidence of greater than normal retranslocation of nutrients from older needles for defoliated trees or greater than normal nutrient loading in older needles of fertilized trees. NA, gs, gm, WUE, and RS were similar for all needles up to six or eight years old, these older needles having NA of 65% of current needles and similar RS. The results do not support to conclusion that older needles of black spruce are retained as an adaptation to nutrient stress. It does not appear that older needles serve as a nutrient storage site in conditions of excess nutrient availability or a greater than normal nutrient source during times of excess nutrient deficiency. It appears that the maintenance of long-livedfoliage in black spruce does not provide for greater flexibility in tree nutrient allocation. Their contribution to the carbon balance of the tree seems to be sufficient to explain their retention.

10.
Evolution ; 42(5): 1036-1046, 1988 Sep.
Article in English | MEDLINE | ID: mdl-28581159

ABSTRACT

Variation in the amount and pattern of plasticity was studied in three cytotypes (4x, 6x, and 8x) of Stellaria longipes and diploids of its suspected progenitor S. longifolia. All 13 traits considered showed plasticity. There were significant differences among cytotypes and habitats in plasticity for many traits. Overall, the diploids, S. longifolia, were most plastic, and the three cytotypes of S. longipes did not differ in amount of plasticity. Stellaria longifolia showed divergence from S. longipes in the pattern of plasticity as well. In general, cytotypes with more similar chromosome numbers had the same pattern of plasticity for more traits. Individuals from tundra populations differed in their pattern of plasticity from those of montane, boreal, and prairie origin, which were more similar to one another. Differences in plasticity among cytotypes were due primarily to divergence in amount, while differences among habitats were most often accounted for by divergent patterns of plasticity. We conclude that both polyploidy and natural selection have affected the evolution of plastic responses in this species complex. Analysis of the correlation between pairs of traits provided evidence that the pattern and amount of plasticity operate independently of one another and may be evolving separately.

SELECTION OF CITATIONS
SEARCH DETAIL
...