Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063015

ABSTRACT

Southern flounder skin pigmentation is a critical phenotypic characteristic for this species' survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune system and are vulnerable to predation, sensitive to UV exposure, and likely have poor survival in the wild. Skin and brain tissue samples from normally pigmented and hypopigmented individuals were analyzed with next-generation RNA sequencing. A total of 1,589,613 transcripts were used to identify 952,825 genes to assemble a de novo transcriptome, with 99.43% of genes mapped to the assembly. Differential gene expression and gene enrichment analysis of contrasting tissues and phenotypes revealed that pseudo-albino individuals appeared more susceptible to environmental stress, UV light exposure, hypoxia, and osmotic stress. The pseudo-albinos' restricted immune response showed upregulated genes linked to cancer development, signaling and response, skin tissue formation, regeneration, and healing. The data indicate that a modified skin collagen structure likely affects melanocyte differentiation and distribution, generating the pseudo-albino phenotype. In addition, the comparison of the brain transcriptome revealed changes in myelination and melanocyte stem cell activity, which may indicate modified brain function, reduced melanocyte migration, and impaired vision.


Subject(s)
Brain , Flounder , Hypopigmentation , Skin Pigmentation , Skin , Transcriptome , Animals , Brain/metabolism , Brain/pathology , Skin/metabolism , Skin/pathology , Hypopigmentation/genetics , Flounder/genetics , Skin Pigmentation/genetics , Gene Expression Profiling , Ultraviolet Rays/adverse effects
2.
Ecol Evol ; 4(9): 1671-85, 2014 May.
Article in English | MEDLINE | ID: mdl-24967084

ABSTRACT

The eastern oyster (Crassostrea virginica Gmelin) is an economically and ecologically valuable marine bivalve occurring in the Gulf of Mexico. This study builds upon previous research that identified two divergent populations of eastern oysters in the western Gulf of Mexico. Allelic and genotypic patterns from 11 microsatellite markers were used to assess genetic structure and migration between the previously described oyster populations in Texas. The main findings are as follows: (1) there are two distinct populations (F ST = 0.392, P < 0.001) of oysters that overlap in the Corpus Christi/Aransas Bay estuarine complex in Texas, (2) the distribution of genotypes among individuals in the contact zone suggests limited hybridization between populations, (3) the variables of salinity, temperature, dissolved oxygen, turbidity and depth are not correlated with allele frequencies on reefs in the contact zone or when analyzed across Texas, and (4) there is little evidence of directional selection acting on the loci assayed here, although patterns at four markers suggested the influence of balancing selection based on outlier analyses. These results are consistent with long-term historical isolation between populations, followed by secondary contact. Recent hydrological changes in the area of secondary contact may be promoting migration in areas that were previously inhospitable to eastern oysters, and observed differences in the timing of spawning may limit hybridization between populations. Comparison of these findings with the results of an earlier study of oysters in Texas suggests that the secondary contact zone has shifted approximately 27 km north, in as little as a 23-year span.

3.
J Bacteriol ; 186(20): 6885-90, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15466042

ABSTRACT

The eutH gene is part of an operon that allows Salmonella enterica to use ethanolamine as a sole source of nitrogen, carbon, and energy. Although the sequence of EutH suggests a role in transport, eutH mutants use ethanolamine normally under standard conditions (pH 7.0). These mutants fail to use ethanolamine at a low pH. Evidence is presented that protonated ethanolamine (Eth0) does not enter cells, while uncharged ethanolamine (Eth0) diffuses freely across the membrane. The external concentration of Eth0 varies with the pH (pK=9.5). At pH 7.0, the standard ethanolamine concentration (41 mM) provides enough Eth0 for an influx rate that can support growth with or without EutH. When a lowered pH and/or ethanolamine concentration reduced the Eth0 concentration below 25 microM, EutH was needed to facilitate diffusion. EutH+ cells grew normally at Eth0 concentrations above 3 microM, close to the Km (9 microM) of the first degradative enzyme, ethanolamine ammonia lyase. It is suggested that EutH facilitates diffusion of Eth0. As predicted for a transporter, EutH contributed to the toxicity of ethanolamine seen under some conditions; furthermore, fusion of EutH to fluorescent Yfp protein provided evidence that EutH is a membrane protein.


Subject(s)
Bacterial Proteins/metabolism , Biological Transport , Ethanolamine/metabolism , Salmonella enterica/physiology , Bacterial Proteins/genetics , Cell Membrane/metabolism , Culture Media , Diffusion , Ethanolamine/chemistry , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Mutation , Operon , Phenotype , Salmonella enterica/genetics , Salmonella enterica/growth & development , Salmonella enterica/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...