Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(2): 892-907, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33393287

ABSTRACT

Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL.

2.
Inorg Chem ; 58(18): 12099-12111, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31448909

ABSTRACT

Two discrete mononuclear complexes, [Tb(bbpen)(NO3)] (I) and [Tb(bbppn)(NO3)] (II), for which H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and H2bbppn = N,N'-bis(2-hydroxylbenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by FTIR, Raman, and photoluminescence (PL, steady-state and time-resolved modes) spectroscopy. The attachment of a methyl group to the ethylenediamine portion of the ligand backbone differentiates II from I and acts as a determining feature to both the structural and optical properties of the former. The single-crystal X-ray structure of H2bbppn is described here for the first time, while that of complex II has been redetermined in the monoclinic C2 space group in light of new diffraction data. In II, selective crystallization leads to spontaneous resolution of enantiomeric molecules in different crystals. Absolute emission quantum yields (ϕ) and luminescence excited-state lifetimes (at room temperature and 11 K) were measured for both complexes. Despite their similar molecular structures, I and II exhibit remarkably different ϕ values of 21 ± 2% and 67 ± 7%, respectively, under UV excitation at room temperature. Results of quantum-mechanical (DFT and TD-DFT) calculations and experimental PL measurements also performed for H2bbpen and H2bbppn confirmed that both ligands are suitable to work as "antennas" for TbIII. Considering the 5D4 lifetime profiles and the significantly higher absolute quantum yield of II, it appears that thermally active nonradiative pathways present in I are minimized in II due to differences in the conformation of the ethylenediamine bridge.

4.
Molecules ; 15(2): 747-65, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20335943

ABSTRACT

The CeO2 nanorods (CeNR) promote the oxidation of ethylbenzene (PhEt) and cyclohexene with t-BuOOH, at temperatures as low as 55 degrees C. For both substrates the saturated C-H bonds are preferentially activated over the unsaturated ones. The catalyst seems fairly stable towards leaching phenomena. The liquid-phase oxidation catalysis may be associated with the Ce3+/Ce4+ inter-conversion in the one-electron redox processes mediating the formation of tert-butyl-(per)oxy radicals. CeNR is very effective in H2O2 disproportionation. Pre-treatment of CeNR with H2O2 or t-BuOOH prior to the catalytic reaction enhances the reaction rate of PhEt with t-BuOOH in comparison to CeNR. Textural characterization and spectroscopic studies suggest that catalytic activation is associated to defect sites.


Subject(s)
Cerium/chemistry , Hydrocarbons/chemistry , Nanotubes/chemistry , Phase Transition , tert-Butylhydroperoxide/chemistry , Adsorption , Benzene Derivatives/chemistry , Catalysis , Nanotubes/ultrastructure , Nitrogen/chemistry , Oxidants/chemistry , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Surface Properties , Temperature , X-Ray Diffraction
5.
Nanotechnology ; 19(29): 295702, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-21730607

ABSTRACT

An atomic force microscopy (AFM) tip has been coated with photoluminescent Eu(3+)-doped Gd(2)O(3) nanorods using a dielectrophoresis technique, which preserves the red emission of the nanorods (quantum yield 0.47). The performance of the modified tips has been tested by using them for regular topography imaging in tapping and contact modes. Both a regular AFM standard grid and a patterned surface (of an organic-inorganic methacrylate Zr-based oxo-cluster and poly(oxyethylene)/siloxane hybrid) have been used. Similar depth values have been measured using a conventional silicon tip and the nanorod-modified tip. The tips before and after use exhibit similar SEM images and photoluminescence spectra and, thus, seem to be stable under working conditions. These tips should find applications in scanning near-field optical microscopy and other scanning techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...