Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(4): 1530-1537, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38226588

ABSTRACT

The difficulty associated with accurately measuring the height of the back peak (Ipb) in cyclic voltammetry (CV) has long plagued electrochemists. Most commonly, Ipb is measured by extrapolating a linear fit from a selected region of a voltammogram after the switching potential (Eλ), but without substantial separation between the peak potential (Ep) and Eλ, this approach always overestimates the background current and so underestimates Ipb. Moreover, experimental conditions can present challenges for this method as an appropriate region for linear fitting is often lacking due to neighboring peaks or solvent electrolysis current. Here, we present a new method for finding the baseline current for the back peak in CV experiments. By examining the CV data as a function of time rather than potential, it is possible to fit a generalized Cottrell or Shoup-Szabo equation to the current decay of the forward peak and extrapolate this function as a baseline for the return peak. This approach was tested by using simulated and experimental data in a variety of conditions, including data demonstrating linear and radial diffusional control. We found that the method allows for more accurate determination of back peak currents, especially when linear fits are complicated by narrow electrochemical windows or radial diffusion. A user-friendly Python program was written to automatically find an appropriate fitting range for this analysis and measure peak currents. We have made this program available to the electrochemical community at large.

2.
Chemistry ; 23(29): 7052-7065, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28474778

ABSTRACT

A family of halogen-substituted Schiff base iron(II) complexes, [FeII (qsal-X)2 ], (qsal-X=5-X-N-(8-quinolyl)salicylaldimines)) in which X=F (1), Cl (2), Br (3) or I (4) has been investigated in detail. Compound 1 shows a temperature invariant high spin state, whereas the others all show abrupt spin transitions, at or above room temperature, namely, 295 K (X=I) up to 342 K (X=Br), these being some of the highest T1/2 values obtained, to date, for FeII N/O species. We have recently reported subtle symmetry breaking in [FeII (qsal-Cl)2 ] 2 with two spin transition steps occurring at 308 and 316 K. A photomagnetic study reveals almost full HS conversion of [FeII (qsal-I)2 ] 4 at low temperature (T(LIESST)=54 °K). The halogen substitution effects on the magnetic properties, as well as the crystal packing of the [FeII (qsal-X)2 ] compounds and theoretical calculations, are discussed in depth, giving important knowledge for the design of new spin crossover materials. In comparison to the well known iron(III) analogues, [FeIII (qsal-X)2 ]+ , the two extra π-π and P4AE interactions found in [FeII (qsal-X)2 ] compounds, are believed to be accountable for the spin transitions occurring at ambient temperatures.

3.
Dalton Trans ; 46(21): 7020-7029, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28513681

ABSTRACT

The influence of the halogen substituent on the qsal moiety of iron(iii) heteroleptic compounds with the formulae [Fe(qsal-X)(thsa)]·nMeCN, where qsal-X- = X-substituted quinolylsalicylaldimine; thsa2- = thiosemicarbazone-salicylaldiminate; X = F; n = 2.5, 1·2.5MeCN and X = Cl 2, Br 3 and I 4, n = 1 (labelled 2·MeCN, 3·MeCN and 4·MeCN, respectively) has been systematically investigated. Magnetic studies on solid samples show incomplete spin crossover in 1-3 which can be related to MeCN solvent loss. Complex 4·MeCN remains fully LS up to 360 K. Single crystals have been examined at variable temperatures for samples possessing different degrees of solvation. Intermolecular C-XH interactions are present for X = F, Cl and Br while a C-Iπ interaction is uniquely observed in 4·MeCN. These preferential interactions result in different supramolecular packings of the various halogen substituted compounds. However, as the LS stability increases from F to I, the ligand field strength is then also suggested to increase from F to I. Consequently, in this family, the electronic structure resulting from halogen variation is believed to influence the magnetic properties more than crystal packing effects. Mössbauer spectra, at variable temperatures, confirm the presence of Fe(iii) and the magnetic properties in these compounds. The effect of different drying methods as well as the crystal/powder effect on the magnetic properties are discussed in the case of 2·MeCN.

SELECTION OF CITATIONS
SEARCH DETAIL
...