Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 239: 115614, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37607446

ABSTRACT

The emergence of the graphene-based hybrid electrical-electrochemical vertical device (EEVD) has introduced a promising nanostructured biosensor tailored for point-of-care applications. In this study, we present an innovative EEVD capable of simultaneously detecting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in both serum and saliva. The foundation of the EEVD lies in a poly-neutral red-graphene heterojunction, which has been enhanced with a bioconjugate of gold nanoparticles and antibodies. The biodevice demonstrates a remarkable limit of detection, registering at the femtomolar scale (2.86 fmol L-1 or 0.1 pg mL-1). Its sensitivity is characterized by a 6.1 mV/decade response, and its operational range spans 10-12 to 10-7 g mL-1 in both serum and saliva samples. With a 20.0 µL of biological samples and a rapid processing time of under 10 min, the EEVD achieves the feat of dual antigen detection. The tests achieved 100.0% specificity, accuracy, and sensitivity in saliva, and 100.0% specificity, 88.9% accuracy, and 80.0% sensitivity in serum. This study highlights the EEVD as a low-cost solution of rapid viral detection during the crucial initial phases of COVID-19 infections.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , SARS-CoV-2 , Saliva , COVID-19/diagnosis , Gold
2.
Biosens Bioelectron ; 199: 113866, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34915214

ABSTRACT

The outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis. EEVD uses serologic IgG quantifications on SARS-CoV-2 Receptor Binding Domain (RBD) bioconjugate immobilized onto device surface. EEVD combines graphene basal plane with high charge carrier mobility, high conductivity, low intrinsic resistance, and interfacial sensitivity to capacitance alterations. EEVD application was carried out in real human serum samples. Since EEVD is a miniaturized device, it requires just 40 µL of sample for a point-of-care COVID-19 infections detection. When compared to serologic assays such ELISA and other immunochromatographic methods, EEVD presents some advantages such as time of analyses (15 min), sample preparation, and a LOD of 1.0 pg mL-1. We glimpse that EEVD meets the principles of robustness and accuracy, desirable analytic parameters for assays destined to pandemics control strategies.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Antibodies, Viral , COVID-19 Testing , Humans , Point-of-Care Systems , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests
3.
Anal Methods ; 14(11): 1094-1102, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34935794

ABSTRACT

Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.


Subject(s)
DNA , Metals , Oxidation-Reduction , Proteins , Spectroscopy, Fourier Transform Infrared/methods
4.
J Colloid Interface Sci ; 599: 198-206, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33945968

ABSTRACT

Synthetic biology pursues the understanding of biological processes and their possible mimicry with artificial bioinspired materials. A number of materials have already been used to mimic the active site of simple redox proteins, including nanosized iron oxides due to their redox properties. However, the mimicry of membrane redox protein complexes is still a challenge. Herein, magnetic iron oxide nanoparticles (NPs), incorporated as non-proteinaceous complexes III and IV in a mitochondrial model membrane, catalyze electron transfer (ET) similarly to the natural complexes towards cytochrome c. The associated molecular mechanism is experimentally proven in solution and in a Langmuir-Blodgett film. A direct and entropy-driven ET, with rate constant of 2.63 ± 0.05Lmol-1 at 25 °C, occurs between the iron sites of the NPs and the cytochrome c heme group, not affecting the protein secondary and tertiary structures. This process requires an activation energy of 40.2 ± 1.5 kJ mol-1 resulting in an overall Gibbs free energy of -55.3 kJ mol-1. Furthermore, the protein-NP system is governed by electrostatic and non-polar forces that contribute to an associative mechanism in the transition state. Finally, the incorporated NPs in a model membrane were able to catalyze ET, such as the natural complexes in respiratory chain. This work presents an experimental approach demonstrating that inorganic nanostructured systems may behave as embedded proteins in the eukaryotic cells membrane, opening the way for more sophisticated and robust mimicry of membrane protein complexes.


Subject(s)
Cytochromes c , Electrons , Catalysis , Electron Transport , Oxidation-Reduction
5.
Chem Commun (Camb) ; 56(71): 10309-10312, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32756675

ABSTRACT

We introduce a set up by coupling multiplex FTIR microscopy to electrochemistry through a home-made spectroelectrochemical cell to observe real time changes in the electronic states of polymeric islands by monitoring the oxidation states of polyaniline (PANI). The resultant technique, called electrochemical-coupled vibrational spectromicroscopy (EVSM), enables the measurement of structural changes in the conductive islands of PANI with the spatial resolution as high as 2.5 µm. Unique 2D and 3D chemical maps obtained by the integration of the spectral bands in the subtractively normalized interfacial infrared (SNIFTIR) spectra reveal electrochemical heterogeneity, showing promising topological properties control for conducting polymer-based electronic devices.

6.
Sci Rep ; 10(1): 1931, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029762

ABSTRACT

Endonuclease III (EndoIII) is a DNA glycosylase that contains the [4Fe4S] cluster, which is essential for the protein to bind to damaged DNA in a process called base excision repair (BER). Here we propose that the change in the covalency of Fe-S bonds of the [4Fe4S] cluster caused by double-stranded (ds)-DNA binding is accompanied by a change in their strength, which is due to alterations of the electronic structure of the cluster. Micro-FTIR spectroscopy in the mid-IR region and FTIR spectroscopy in the far IR (450 and 300 cm-1) were used independently to study the structural changes in EndoIII and the behavior of the [4Fe4S] cluster it contains, in the native form and upon its binding to ds-DNA. Structural changes in the DNA itself were also examined. The characteristics vibrational modes, corresponding to Fe-S (sulfide) and Fe-S (thiolate) bonds were identified in the cluster through far IR spectroscopy as well through quantum chemistry calculations. Based on the experimental results, these vibrational modes shift in their spectral positions caused by negatively charged DNA in the vicinity of the cluster. Modifications of the Fe-S bond lengths upon DNA binding, both of the Fe-S (sulfide) and Fe-S (thiolate) bonds in the [4Fe4S] cluster of EndoIII are responsible for the stabilization of the cluster towards higher oxidation state (3+), and hence its redox communication along the ds-DNA helix.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Escherichia coli Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Binding Sites/physiology , DNA Damage/physiology , DNA Glycosylases/metabolism , DNA Repair/physiology , Escherichia coli/metabolism , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared/methods
7.
Nat Commun ; 11(1): 316, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949281

ABSTRACT

Here we propose an experimental setup based on operando X-ray absorption spectroscopy (XAS) to understand why copper-containing oxidoreductase enzymes show exceptional performance as catalysts for the oxygen reduction reaction (ORR). An electrode based on carbon nanoparticles organized in mesoporous structures with bilirubin oxidase (BOD) was developed to be used in a home-made operando XAS electrochemical cell, and we probed the electron transfer under ORR regime. In the presence of molecular oxygen, the BOD cofactor containing 4 copper ions require an overpotential about 150 mV to be reduced as compared to that in the absence of oxygen. A second electron transfer step, which occurs faster than the cofactor reduction, suggests that the cooper ions act as a tridimensional redox active electronic bridges for the electron transfer reaction.


Subject(s)
Copper/chemistry , Electron Transport , Electrons , Metalloproteins/chemistry , Oxidoreductases/chemistry , X-Ray Absorption Spectroscopy/methods , Catalysis , Electrodes , Models, Chemical , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxygen/chemistry , Saccharomycetales
8.
Nitric Oxide ; 96: 29-34, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31952991

ABSTRACT

Multiplex Fourier-transform infrared microscopy (µFT-IR) helped to monitor trans-[Ru(NO) (NH3)4 (isn)]3+(I), uptake by A549 lung carcinoma cell, as well as the generation of its product, nitric oxide (NO), inside the cell. Chronoamperometry with NO-sensor and µFT-IR showed that exogenous NADH and the A549 cell induced the NO release redox mechanism. Chemical imaging confirmed that (I) was taken up by the cell, and that its localization coincided with its consumption in the cellular environment within 15 min of exposure. The Ru-NO absorption band in the IR spectrum shifted from 1932 cm-1, when NO was coordinated to Ru as {RuII-NO+}3+, to 1876 cm-1, due the formation of reduced species {RuII-NO0}2+, a precursor of NO release. Futhermore, the µFT-IR spectral profile demonstrated that, as a result of the NO action on the target, NO interacted with nucleic acids, which provided a biochemical response that is detectable in living cells.


Subject(s)
Coordination Complexes/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , A549 Cells , Coordination Complexes/chemical synthesis , DNA/metabolism , Humans , Microscopy/methods , Nitric Oxide Donors/chemical synthesis , Oxidation-Reduction , Proof of Concept Study , Ruthenium/chemistry , Single-Cell Analysis/methods
9.
ACS Appl Mater Interfaces ; 11(20): 18053-18061, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30964981

ABSTRACT

The controlled assembly of metal nanoparticles into ordered structures interacting with biological molecules is an emerging concept in surface science. Here, bare magnetite nanoparticles (Fe3O4-NPs) were employed as nanoadhesives to capture hollow metallic nanostructures (Au-Ag nanocages) from aqueous suspensions, and these coupled nanostructures were patterned onto various types of substrate via magnetolithography. Microwires of Au-Ag nanocages patterned onto an Au substrate behaved as optical antennas, providing a plasmonic enhancement exploited in surface-enhanced infrared absorption spectroscopy (SEIRAS) to investigate the proteins cytochrome c, bilirubin oxidase, alcohol dehydrogenase, bovine serum albumin, and glucose oxidase. Chemical maps containing more than 4000 spectra, acquired within only 2 min with a focal plane array detector, indicate that proteins were adsorbed along the microwires with their secondary structure preserved according to the spatial distribution of their amide groups. We believe there are significant practical aspects of the methodology proposed here to develop an alternative label-free assay for investigating biological molecules.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Animals , Cattle , Nanoparticles , Spectrophotometry, Infrared
10.
Nanoscale ; 10(31): 15048-15057, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30052241

ABSTRACT

Graphene is considered a model material for surfaces because it is stable despite being composed of a single layer of carbon atoms. Although the thermal and electronic properties of graphene are well reported, the behavior of graphene sheets with the addition of charges to the structure is not well understood. Combining infrared spectroscopy, electrochemical analysis, and computational simulations, we report the effect of an electrochemically induced covalent anchoring of 4-carboxyphenyl (4-CP) units on the optical and electronic properties of graphene. Charges in graphene become concentrated at specific sites of the sheet when electrochemically perturbed and the functionalization occurs inhomogeneously along the graphene sheet. We observed that, when graphene is covalently functionalized, the resistance to heterogeneous electron transfer is increased by a factor of 1.4. Furthermore, scattering-type scanning near-field optical microscopy and atomic force microscopy show that the covalent functionalization affects drastically the optical and physical properties of the graphene/SiO2 system, especially the plasmon-phonon coupling after the functionalization. In addition, from these we infer that a comparatively higher degree of functionalization occurs near the electrode edges. These results are supported by computational simulations, which show that the covalent anchoring of 4-CP units weakens electron transfer because the charges are retained on the sp3-hybridized carbon atoms generated upon functionalization, suggesting that graphene properties are deeply influenced by the way the molecules are immobilized on its structure.

11.
Anal Chem ; 90(3): 1487-1491, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29359936

ABSTRACT

IR spectroscopy is an excellent method for understanding surface redox chemistry. However, obtaining sufficient spatial resolution to analyze in situ surface redox reactions is difficult because the aqueous sampling environments provide some challenges for IR spectroscopy. These challenges arise because of the vibrational contribution of water. In this letter, we demonstrate a solution to this problem, where the key development enabling the coupling of spectromicroscopy with electrochemical measurements is a CaF2/electrolyte/Au sandwich IR-sensitive sample holder that acts as an electrochemical cell. In this system, there is a very thin layer of aqueous electrolyte (∼10 µm), and it is possible to monitor, in real time, the vibrational maps and changes to the Au surface modified with iron(II, III) hexacyanoferrate(II, III) by varying the electrochemical potential. By selecting specific vibrational modes with a focal plane array detector, which allows the simultaneous collection of IR spectra from 4096 microscopic regions, chemical maps showing the surface changes were obtained and analyzed using color, providing new insights into how the charge transfer processes affect the chemical composition in specific 2D spatially resolved regions.

12.
Anal Chem ; 89(3): 1757-1763, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208255

ABSTRACT

We have used temperature gradient surface plasmon resonance (SPR) measurements to quantitatively evaluate how the stability of different types of hybrids formed with DNA probes on surfaces is affected by probe spacing. SPR sensors with different average surface densities of probes were prepared by coadsorbing probes with lateral spacers strands comprised of phosphorothioated adenine nucleotides (A15*). Increasing the fraction of A15* spacers in the immobilization solution results in larger distances between probes on the sensor, determined here using a combination of SPR and X-ray photoelectron spectroscopy (XPS) measurements. The hybridization activities of probes were simultaneously measured over a temperature range that spanned the denaturation temperature (Tm) of hybrids by applying a spatial temperature gradient across the sensor surface. The resulting temperature profiles of hybridization activity show how the stability of hybrids increases as either the distance between probes or the ionic strength of the hybridization buffer increase. Additionally, hybridization activity profiles sharpen as the spacing between probes increases, indicating more homogeneous hybridization behavior of probes. The results provide quantitative experimental data for testing theoretical models of stability, supporting models that account for both repulsive interactions between DNA strands and local variability in probe surface density.


Subject(s)
DNA Probes/metabolism , DNA/metabolism , Surface Plasmon Resonance , Base Pair Mismatch , DNA/chemistry , DNA Probes/chemistry , Nucleic Acid Hybridization , Photoelectron Spectroscopy , Transition Temperature
13.
Anal Chem ; 87(15): 7825-32, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26140476

ABSTRACT

We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.


Subject(s)
Biosensing Techniques/methods , Temperature , Kinetics , Surface Plasmon Resonance , Thermodynamics , Time Factors
14.
Int J Mol Sci ; 16(7): 14594-607, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26132565

ABSTRACT

Supramolecular self-assembly has been demonstrated to be a useful approach to developing new functional nanomaterials. In this work, we used a cobalt Prussian blue analogue (PBA, Co3[Co(CN)6]2) compound and a ß-cyclodextrin (CD) macrocycle to develop a novel host-guest PBA-CD nanomaterial. The preparation of the functional magnetic material involved the self-assembly of CD molecules onto a PBA surface by a co-precipitation method. According to transmission electronic microscopy results, PBA-CD exhibited a polydisperse structure composed of 3D nanocubes with a mean edge length of 85 nm, which became shorter after CD incorporation. The supramolecular arrangement and structural, crystalline and thermal properties of the hybrid material were studied in detail by vibrational and electronic spectroscopies and X-ray diffraction. The cyclic voltammogram of the hybrid material in a 0.1 mol · L(-1) NaCl supporting electrolyte exhibited a quasi-reversible redox process, attributed to Co2+/Co3+ conversion, with an E1/2 value of 0.46 V (vs. SCE), with higher reversibility observed for the system in the presence of CD. The standard rate constants for PBA and PBA-CD were determined to be 0.07 and 0.13 s(-1), respectively, which suggests that the interaction between the nanocubes and CD at the supramolecular level improves electron transfer. We expect that the properties observed for the hybrid material make it a potential candidate for (bio)sensing designs with a desirable capability for drug delivery.


Subject(s)
Cobalt/chemistry , Cyclodextrins/chemistry , Ferrocyanides/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxidation-Reduction , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...