Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Eur J Radiol ; 171: 111281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219354

ABSTRACT

PURPOSE: To evaluate the contribution of F-18 FDG-PET/MRI in the search for the etiology of the inflammation of unknown origin (IUO) and fever of unknown origin (FUO). MATERIAL AND METHODS: The study included 104 patients who underwent F-18 FDG-PET/MRI for IUO or FUO. The sensitivity, specificity, predictive values of the PET/MRI findings in relation to the final diagnosis of IUO/FUO were evaluated. A five-point Likert scale was used to semiquantitatively assess the probability of the cause of IUO/FUO based on PET/MRI finding. Furthermore, clinical (fever, arthralgia, weight loss, night sweats, age) and laboratory (C-reactive protein, leukocytes) parameters were monitored and compared with the true positivity rate of PET/MRI. RESULTS: In patients with definitively identified etiology of FUO and IUO, FDG-PET/MRI achieved a sensitivity of 96 %, specificity of 82 %, and positive and negative predictive values of 92 and 90 %. The cause of the IUO was determined in 71 patients (68.3 %). In 33 (31.7 %) patients, the etiology of IUO/FUO remained unknown, while in 25 (75.8 %) of them the symptoms resolved spontaneously and in 8 (24.2 %) patients they persisted without explanation even after 12 months of the follow-up. The most significant parameter in relation to subsequent PET/MRI finding was increased level of CRP, which was present in 96 % of true positive PET/MRI and normal CRP level was present in 56 % of true negative PET/MRI. CONCLUSION: Based on this study, FDG-PET/MRI is a suitable alternative for the investigation of IUO/FUO, this imaging technique has a very high sensitivity and negative predictive value.


Subject(s)
Fever of Unknown Origin , Fluorodeoxyglucose F18 , Humans , Fever of Unknown Origin/etiology , Fever of Unknown Origin/complications , Positron-Emission Tomography/methods , Inflammation/complications , Inflammation/diagnostic imaging , C-Reactive Protein/metabolism , Radiopharmaceuticals
2.
Biomed Pharmacother ; 149: 112806, 2022 May.
Article in English | MEDLINE | ID: mdl-35303568

ABSTRACT

Antibiotic resistance is currently a serious health problem. Since the discovery of new antibiotics no longer seems to be a sufficient tool in the fight against multidrug-resistant infections, adjuvant (combination) therapy is gaining in importance as well as reducing bacterial virulence. Silymarin is a complex of flavonoids and flavonolignans known for its broad spectrum of biological activities, including its ability to modulate drug resistance in cancer. This work aimed to test eleven, optically pure silymarin flavonolignans for their ability to reverse the multidrug resistance phenotype of Staphylococcus aureus and reduce its virulence. Silybin A, 2,3-dehydrosilybin B, and 2,3-dehydrosilybin AB completely reversed antibiotic resistance at concentrations of 20 µM or less. Both 2,3-dehydrosilybin B and AB decreased the antibiotic-induced gene expression of representative efflux pumps belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) families. 2,3-Dehydrosilybin B also inhibited ethidium bromide accumulation and efflux in a clinical isolate whose NorA and MdeA overproduction was induced by antibiotics. Most of the tested flavonolignans reduced cell-to-cell communication on a tetrahydrofuran-borate (autoinducer-2) basis, with isosilychristin leading the way followed by 2,3-dehydrosilybin A and AB, which halved communication at 10 µM. Anhydrosilychristin was the only compound that reduced communication based on acyl-homoserine lactone (autoinducer 1), with an IC50 of 4.8 µM. Except for isosilychristin and anhydrosilychristin, all of the flavonolignans inhibited S. aureus surface colonization, with 2,3-dehydrosilybin A being the most active (IC50 10.6 µM). In conclusion, the selected flavonolignans, particularly derivatives of 2,3-dehydrosilybin B, 2,3-dehydrosilybin AB, and silybin A are non-toxic modulators of S. aureus multidrug resistance and can decrease the virulence of the bacterium, which deserves further detailed research.


Subject(s)
Silymarin , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Humans , Silybin/pharmacology , Silymarin/chemistry , Silymarin/pharmacology , Staphylococcus aureus , Virulence
3.
Antioxidants (Basel) ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466263

ABSTRACT

Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.

4.
J Agric Food Chem ; 68(7): 1763-1779, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-30907588

ABSTRACT

Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial , Drug Resistance, Neoplasm , Flavonoids/administration & dosage , Flavonolignans/administration & dosage , Neoplasms/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacteria/genetics , Bacteria/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics
5.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416138

ABSTRACT

Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.

6.
PLoS One ; 14(5): e0212718, 2019.
Article in English | MEDLINE | ID: mdl-31075104

ABSTRACT

BACKGROUND: Although many genetic manipulations of crops providing biofortified or safer food have been done, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. METHODS: An Agrobacterium-mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generation were evaluated by molecular methods. Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF), genotoxicity and affection of biodiversity interactions, which was tested through monitoring barley natural virus pathogen-host interactions-the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. RESULTS: Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in the Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity. CONCLUSION: Our findings provide a new perspective that could help to evaluate the safety of products from genetically modified crops.


Subject(s)
Ectopic Gene Expression , Food Safety , Hordeum/genetics , Plant Proteins/genetics , Recombinant Proteins , Stress, Physiological/genetics , Adaptation, Biological , Host-Pathogen Interactions/genetics , Humans , Plants, Genetically Modified , Nicotiana/genetics
7.
Front Plant Sci ; 9: 1476, 2018.
Article in English | MEDLINE | ID: mdl-30459775

ABSTRACT

Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.

8.
Stand Genomic Sci ; 13: 3, 2018.
Article in English | MEDLINE | ID: mdl-29435100

ABSTRACT

In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the ß-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.

10.
Sci Rep ; 7(1): 8406, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814712

ABSTRACT

Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.


Subject(s)
Bacteria/metabolism , Dichloroethylenes/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Acetophenones/metabolism , Aerobiosis , Bacteria/genetics , Biodegradation, Environmental , Cinnamates/metabolism , Hydroxybenzoates/metabolism , Microbial Consortia/genetics , Phenols/metabolism , Phenylethyl Alcohol/metabolism , Phylogeny , RNA, Ribosomal, 16S , Secondary Metabolism , Soil Microbiology , Toluene/metabolism
11.
J Environ Sci Health B ; 52(5): 338-345, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28277078

ABSTRACT

A plant selection system based on the phosphomannose isomerase gene (pmi) as a selectable marker is often used to avoid selection using antibiotic resistance. Nevertheless, pmi gene is endogenous in several plant species and therefore difficult to use in such cases. Here we evaluated and compared Agrobacterium-mediated transformation of Linum usitatissimum breeding line AGT-952 (without endogenous pmi gene) and Nicotiana tabacum var. WSC-38 (with endogenous pmi gene). Transformation was evaluated for vectors bearing transgenes that have the potential to be involved in improved phytoremediation of contaminated environment. Tobacco regenerants selection resulted in 6.8% transformation efficiency when using a medium supplemented with 30 g/L mannose with stepwise decrease of the sucrose concentration. Similar transformation efficiency (5.3%) was achieved in transformation of flax. Relatively low selection efficiency was achieved (12.5% and 34.8%, respectively). The final detection of efficient pmi selection was conducted using PCR and the non-endogenous genes; pmi transgene for flax and todC2 transgene for tobacco plants.


Subject(s)
Agrobacterium/genetics , Flax/genetics , Mannose-6-Phosphate Isomerase/genetics , Nicotiana/genetics , Transformation, Bacterial/genetics , Biodegradation, Environmental , Culture Media/chemistry , Flax/drug effects , Mannose/metabolism , Mannose/pharmacology , Plants, Genetically Modified/genetics , Selection, Genetic , Nicotiana/drug effects
12.
Protein Expr Purif ; 129: 84-93, 2017 01.
Article in English | MEDLINE | ID: mdl-27654923

ABSTRACT

The osmotin protein is involved in both monocot and dicot plant responses to biotic and abiotic stress. To determine the biological activity of osmotin, the gene was amplified from tobacco genomic DNA, fused with the hexahistidine tag motif and successfully expressed in Escherichia coli, after which the recombinant osmotin was purified and renatured. Various activities were then tested, including hemolytic activity, toxicity against human embryonic kidney cells, and the antifungal activity of the recombinant osmotin. We found that osmotin had no adverse effects on human kidney cells up to a concentration of 500 µg.ml-1. However, the purified osmotin also had significant antimicrobial activity, specifically against fungal pathogens causing candidiasis and otitis, and against the common food pathogens. Using the osmotin-Agrobacterium construct, the osmotin gene was inserted into tobacco plants in order to facilitate the isolation of recombinant protein. Using qPCR, the presence and copy number of the transgene was detected in the tobacco plant DNA. The transgene was also quantified using mRNA, and results indicated a strong expression profile, however the native protein has been never isolated. Once the transgene presence was confirmed, the transgenic tobacco plants were grown in high saline concentrations and monitored for seed germination and chlorophyll content as indicators of overall plant health. Results indicated that the transgenic tobacco plants had a higher tolerance for osmotic stress. These results indicate that the osmotin gene has the potential to increase crop tolerance to stresses such as fungal attack and unfavorable osmotic conditions.


Subject(s)
Nicotiana , Plant Proteins , Plants, Genetically Modified , Salt-Tolerant Plants , Humans , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism
13.
PLoS One ; 11(12): e0167927, 2016.
Article in English | MEDLINE | ID: mdl-27930707

ABSTRACT

Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.


Subject(s)
Biodegradation, Environmental , Genetic Engineering/methods , Metals, Heavy/metabolism , Plants, Genetically Modified/metabolism , Polychlorinated Biphenyls/metabolism , Promoter Regions, Genetic , Soil Pollutants/metabolism , Urtica dioica/metabolism , Cadmium/metabolism , Gene Expression Regulation, Plant/genetics , Lead/metabolism , Metals, Heavy/analysis , Plants, Genetically Modified/genetics , Polychlorinated Biphenyls/analysis , Promoter Regions, Genetic/genetics , Soil/chemistry , Urtica dioica/genetics , Zinc/metabolism
14.
Article in English | MEDLINE | ID: mdl-27869691

ABSTRACT

Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants' degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.


Subject(s)
Bacteria/metabolism , Benzofurans/metabolism , Biodegradation, Environmental , Pentachlorophenol/metabolism , Polychlorinated Dibenzodioxins/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Benzofurans/analysis , Biotransformation , Humans , Soil Pollutants/analysis
15.
Int J Mol Sci ; 17(8)2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27483244

ABSTRACT

Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Plants/metabolism , Plants/microbiology , Polychlorinated Biphenyls/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Bacteria/classification , Bacteria/isolation & purification , Secondary Metabolism , Soil Pollutants/chemistry
16.
Front Microbiol ; 7: 995, 2016.
Article in English | MEDLINE | ID: mdl-27446035

ABSTRACT

Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

17.
Front Microbiol ; 7: 837, 2016.
Article in English | MEDLINE | ID: mdl-27313574

ABSTRACT

Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.

18.
N Biotechnol ; 33(5 Pt B): 625-635, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-26703807

ABSTRACT

Phytoremediation has emerged as an attractive methodology to deal with environmental pollution, which is a serious worldwide problem. Although important advances have been made in this research field, there are still some drawbacks to become a widely used practice, such as the limited plant's metabolic rate and their difficulty to break down several organic compounds or to tolerate/accumulate heavy metals. However, biotechnology has opened new gateways in phytoremediation research by offering the opportunity for direct gene transfer to enhance plant capabilities for environmental cleanup. In this context, hairy roots (HRs) have emerged as an interesting model system to explore the potential of plants to remove inorganic and organic pollutants. Besides, their use in rhizoremediation studies has also been explored. In this minireview we will discuss the most recent advances using genetic engineering for enhancing phytoremediation capabilities of plants and HRs.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants/metabolism , Plants, Genetically Modified/metabolism , Biotechnology , Genetic Engineering , Models, Biological , Plant Roots/metabolism , Plant Roots/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Rhizosphere
19.
Front Microbiol ; 6: 1268, 2015.
Article in English | MEDLINE | ID: mdl-26635740

ABSTRACT

Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.

20.
Folia Microbiol (Praha) ; 60(6): 531-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25921720

ABSTRACT

Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.


Subject(s)
Bacteria/isolation & purification , Sewage/microbiology , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Biodiversity , Czech Republic , DNA, Bacterial/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...