Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38399282

ABSTRACT

In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.

2.
Nanoscale Adv ; 5(11): 3005-3017, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260496

ABSTRACT

The engineering of epitaxial, two-dimensional (2D) nano-heterostructures has stimulated great interest owing to an expectation of better functional properties (e.g., photocatalytic, piezoelectric). Hydrothermal topotactic epitaxy is one of the promising synthetic approaches for their preparation, particularly the formation of a highly ordered, epitaxial interface and possibilities for the preparation of anisotropic nanostructures of symmetrical materials. The present study highlights the key parameters when steering the alkaline, hydrothermal, topochemical conversion process from Bi4Ti3O12 nanoplatelets to the intermediate, epitaxial, SrTiO3/Bi4Ti3O12 nano-heterostructures and the final SrTiO3 nanoplatelets by balancing the lattice mismatch and the supersaturation. An atomic-scale examination revealed the formation of an ordered epitaxial SrTiO3/Bi4Ti3O12 interface with the presence of dislocations. The SrTiO3 grows in islands for a stoichiometric amount of Sr (Sr/Ti = 1) and the growth resembles a layer-by-layer mode for surplus Sr content (Sr/Ti ≥ 12). The latter enables SrTiO3 overgrowth of the Bi4Ti3O12 basal surface planes, protecting them against dissolution from the top and consequently ensuring the preservation of the platelet morphology during the entire transformation process, the kinetics of which is controlled by the base concentration. A developed understanding of this particular transformation provides the guiding principles and ideas for designing other defined or complex epitaxial heterostructures and structures under low-temperature hydrothermal conditions.

3.
Small ; 19(35): e2301981, 2023 08.
Article in English | MEDLINE | ID: mdl-37186376

ABSTRACT

Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.


Subject(s)
Biocompatible Materials , Polyesters , Biocompatible Materials/chemistry , Polyesters/chemistry , Temperature , Crystallization
4.
ACS Appl Mater Interfaces ; 13(1): 370-381, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33351589

ABSTRACT

Low-temperature hydrothermal epitaxial growth and topochemical conversion (TC) reactions offer unexploited possibilities for the morphological engineering of heterostructural and non-equilibrium shape (photo)catalyst particles. The hydrothermal epitaxial growth of SrTiO3 on Bi4Ti3O12 platelets is studied as a new route for the formation of novel nanoheterostructural SrTiO3/Bi4Ti3O12 platelets at an intermediate stage or (100)-oriented mesocrystalline SrTiO3 nanoplatelets at the completed stage of the TC reaction. The Bi4Ti3O12 platelets act as a source of Ti(OH)62- species and, at the same time, as a substrate for the epitaxial growth of SrTiO3. The dissolution of the Bi4Ti3O12 platelets proceeds faster from the lateral direction, whereas the epitaxial growth of SrTiO3 occurs on both bismuth-oxide-terminated basal surface planes of the Bi4Ti3O12 platelets. In the progress of the TC reaction, the Bi4Ti3O12 platelet is replaced from the lateral ends toward the interior by SrTiO3, while Bi4Ti3O12 is preserved in the core of the heterostructural platelet. Without any support from noble-metal doping or cocatalysts, the SrTiO3/Bi4Ti3O12 platelets show stable and 15 times higher photocatalytic H2 production (1265 µmol·g-1·h-1; solar-to-hydrogen (STH) efficiency = 0.19%) than commercial SrTiO3 nanopowders (81 µmol·g-1·h-1; STH = 0.012%) in pH-neutral water/methanol solutions. A plausible Z scheme is proposed to describe the charge-transfer mechanism during the photocatalysis.

5.
Acta Chim Slov ; 65(3): 630-637, 2018.
Article in English | MEDLINE | ID: mdl-33562905

ABSTRACT

Plate-like Bi4Ti3O12 particles were synthesized using a one-step, molten-salt method from Bi2O3 and TiO2 nanopowders at 800 °C. The reaction parameters that affect the crystal structure and morphology were identified and systematically investigated. The differences between various Bi4Ti3O12 plate-like particles were examined in terms of the ferroelectric-to-paraelectric phase transition and the photocatalytic activity for the degradation of Rhodamine B under UV-Alight irradiation. The results encouraged us to conduct further testing of the as-prepared Bi4Ti3O12 plate-like particles as templates for the preparation of plate-like SrTiO3 perovskite particles using a topochemical conversion under hydrothermal conditions. The characteristics of the Bi4Ti3O12 plates and the reaction parameters for which the SrTiO3 preserved the shape of the initial Bi4Ti3O12 template particles were determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...