Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 113(1): 155-66, 2002.
Article in English | MEDLINE | ID: mdl-12123694

ABSTRACT

Although skeletal pain plays a major role in reducing the quality of life in patients suffering from osteoarthritis, Paget's disease, sickle cell anemia and bone cancer, little is known about the mechanisms that generate and maintain this pain. To define the peripheral fibers involved in transmitting and modulating skeletal pain, we used immunohistochemistry with antigen retrieval, confocal microscopy and three-dimensional image reconstruction of the bone to examine the sensory and sympathetic innervation of mineralized bone, bone marrow and periosteum of the normal mouse femur. Thinly myelinated and unmyelinated peptidergic sensory fibers were labeled with antibodies raised against calcitonin gene-related peptide (CGRP) and the unmyelinated, non-peptidergic sensory fibers were labeled with the isolectin B4 (Bandeira simplicifolia). Myelinated sensory fibers were labeled with an antibody raised against 200-kDa neurofilament H (clone RT-97). Sympathetic fibers were labeled with an antibody raised against tyrosine hydroxylase. CGRP, RT-97, and tyrosine hydroxylase immunoreactive fibers, but not isolectin B4 positive fibers, were present throughout the bone marrow, mineralized bone and the periosteum. While the periosteum is the most densely innervated tissue, when the total volume of each tissue is considered, the bone marrow receives the greatest total number of sensory and sympathetic fibers followed by mineralized bone and then periosteum. Understanding the sensory and sympathetic innervation of bone should provide a better understanding of the mechanisms that drive bone pain and aid in developing therapeutic strategies for treating skeletal pain.


Subject(s)
Femur/chemistry , Femur/innervation , Nerve Fibers/chemistry , Pain/pathology , Plant Lectins , Afferent Pathways , Animals , Bone Marrow/chemistry , Bone Marrow/innervation , Bone and Bones/chemistry , Bone and Bones/innervation , Calcitonin Gene-Related Peptide/analysis , Efferent Pathways , Immunohistochemistry , Lectins/analysis , Male , Mice , Mice, Inbred C3H , Nerve Fibers, Myelinated/chemistry , Neurofilament Proteins/analysis , Pain/metabolism , Pain/physiopathology , Periosteum/chemistry , Periosteum/innervation , Sympathetic Fibers, Postganglionic/chemistry , Tyrosine 3-Monooxygenase/analysis
3.
Cancer Res ; 61(10): 4038-47, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11358823

ABSTRACT

Bone cancer pain most commonly occurs when tumors originating in breast, prostate, or lung metastasize to long bones, spinal vertebrae, and/or pelvis. Primary and metastatic cancers involving bone account for approximately 400,000 new cancer cases per year in the United States alone, and >70% of patients with advanced breast or prostate cancer have skeletal metastases. Whereas pain resulting from bone cancer can dramatically impact an individual's quality of life, very little is known about the mechanisms that generate and maintain this pain. To begin to define the mechanisms that give rise to advanced bone cancer pain, osteolytic 2472 sarcoma cells or media were injected into the intramedullary space of the femur of C3H/HeJ mice, and the injection hole was sealed using dental amalgam, confining the tumor cells to the bone. Twelve days after injection of 2472 tumor cells, animals showed advanced tumor-induced bone destruction of the injected femur, bone cancer pain, and a stereotypic set of neurochemical changes in the spinal cord dorsal horn that receives sensory inputs from the affected femur. Administration of osteoprotegerin, a naturally secreted decoy receptor that inhibits osteoclast maturation and activity and induces osteoclast apoptosis, or vehicle was begun at 12 days, when significant bone destruction had already occurred, and administration was continued daily until day 21. Ongoing pain behaviors, movement-evoked pain behaviors, and bone destruction were assessed on days 10, 12, 14, 17, and 21. The neurochemistry of the spinal cord was evaluated at days 12 and 21. Results indicated that osteoprotegerin treatment halted further bone destruction, reduced ongoing and movement-evoked pain, and reversed several aspects of the neurochemical reorganization of the spinal cord. Thus, even in advanced stages of bone cancer, ongoing osteoclast activity appears to be involved in the generation and maintenance of ongoing and movement-evoked pain. Blockade of ongoing osteoclast activity appears to have the potential to reduce bone cancer pain in patients with advanced tumor-induced bone destruction.


Subject(s)
Bone Neoplasms/complications , Glycoproteins/pharmacology , Pain/drug therapy , Animals , Bone Neoplasms/pathology , Disease Models, Animal , Male , Mice , Mice, Inbred C3H , Neurons, Afferent/metabolism , Neurons, Afferent/physiology , Osteoclasts/drug effects , Osteoclasts/physiology , Osteolysis/complications , Osteolysis/drug therapy , Osteolysis/etiology , Osteoprotegerin , Pain/etiology , Proto-Oncogene Proteins c-fos/biosynthesis , Receptors, Cytoplasmic and Nuclear , Receptors, Tumor Necrosis Factor , Sarcoma, Experimental/complications , Sarcoma, Experimental/pathology , Spinal Cord/drug effects , Spinal Cord/pathology
4.
Nat Med ; 6(5): 521-8, 2000 May.
Article in English | MEDLINE | ID: mdl-10802707

ABSTRACT

Bone cancer pain is common among cancer patients and can have a devastating effect on their quality of life. A chief problem in designing new therapies for bone cancer pain is that it is unclear what mechanisms drive this distinct pain condition. Here we show that osteoprotegerin, a secreted 'decoy' receptor that inhibits osteoclast activity, also blocks behaviors indicative of pain in mice with bone cancer. A substantial part of the actions of osteoprotegerin seems to result from inhibition of tumor-induced bone destruction that in turn inhibits the neurochemical changes in the spinal cord that are thought to be involved in the generation and maintenance of cancer pain. These results demonstrate that excessive tumor-induced bone destruction is involved in the generation of bone cancer pain and that osteoprotegerin may provide an effective treatment for this common human condition.


Subject(s)
Bone Demineralization, Pathologic/drug therapy , Glycoproteins/therapeutic use , Osteosarcoma/complications , Pain/drug therapy , Receptors, Cytoplasmic and Nuclear , Spinal Cord/drug effects , Animals , Astrocytes/drug effects , Behavior, Animal/drug effects , Hindlimb/pathology , Male , Mice , Mice, Inbred C3H , Osteoclasts/drug effects , Osteoprotegerin , Receptors, Tumor Necrosis Factor , Sarcoma, Experimental/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...