Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15711, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28593989

ABSTRACT

The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian-human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1ß in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques.


Subject(s)
AIDS Vaccines/immunology , HIV Envelope Protein gp120/immunology , Killer Cells, Natural/immunology , Simian Immunodeficiency Virus/immunology , Animals , Complement System Proteins/immunology , Epitopes/immunology , Female , HIV Antibodies/immunology , HIV-1 , Humans , Killer Cells, Natural/cytology , Leukocytes, Mononuclear/cytology , Macaca mulatta , Male , Mutation , Neutralization Tests , Phagocytosis , Phylogeny , Predictive Value of Tests , Protein Binding , Recombinant Proteins/immunology , Regression Analysis
2.
J Virol ; 89(12): 6462-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855741

ABSTRACT

UNLABELLED: An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.


Subject(s)
HIV-1/immunology , SAIDS Vaccines/immunology , Vaccination/methods , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Aspartate Aminotransferases , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Consensus Sequence , Enzyme-Linked Immunospot Assay , HIV Antibodies/blood , HIV-1/genetics , Humans , Interferon-gamma/metabolism , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
3.
Virology ; 475: 37-45, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462344

ABSTRACT

Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.


Subject(s)
HIV-1/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Viral Envelope Proteins/metabolism , Animals , Gene Expression Regulation, Viral/physiology , HEK293 Cells , Humans , Mutation , Phylogeny , Viremia
4.
Nature ; 505(7484): 502-8, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24352234

ABSTRACT

A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Disease Susceptibility/immunology , Female , Founder Effect , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/chemistry , Humans , Immune Evasion/immunology , Macaca mulatta , Male , Molecular Sequence Data , Phylogeny , Risk , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/chemistry , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , env Gene Products, Human Immunodeficiency Virus/immunology
5.
Sci Transl Med ; 3(81): 81ra36, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21543722

ABSTRACT

The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.


Subject(s)
Mucous Membrane/virology , Simian Immunodeficiency Virus/pathogenicity , Alleles , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carrier Proteins/genetics , Haplorhini , Humans
6.
Retrovirology ; 7: 7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20122164

ABSTRACT

Breast milk transmission remains a major mode of infant HIV acquisition, yet anatomic and immunologic forces shaping virus quasispecies in milk are not well characterized. In this study, phylogenic analysis of envelope sequences of milk SIV variants revealed groups of nearly identical viruses, indicating local virus production. However, comparison of the patterns and rates of CTL escape of blood and milk virus demonstrated only subtle differences between the compartments. These findings suggest that a substantial fraction of milk viruses are produced by locally-infected cells, but are shaped by cellular immune pressures similar to that in the blood.


Subject(s)
Blood/virology , Breast/virology , Milk, Human/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/growth & development , Animals , Cluster Analysis , Female , Macaca mulatta , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...