Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res ; 1107(1): 104-10, 2006 Aug 30.
Article in English | MEDLINE | ID: mdl-16822483

ABSTRACT

Whisker trimming deprives the cortical barrel field from the patterned sensory input that derives from active touch but leaves passive tactile signals unaltered. We have studied in the rat barrel field, by stereological procedures, the effects of a sustained period of unilateral deprivation by whisker clipping during adolescence and early adulthood on (1) the surface density (SV) of asymmetric synapses, as determined from measuring the presynaptic membrane specializations, and (2) the numerical density of asymmetric synaptic profiles (NA), classified according to their postsynaptic target and their apparent curvature. Compared to control rats, the procedure did not change the overall volume of the region, the volume fraction occupied by each cortical layer, or the volume fraction occupied by unmyelinated axons and boutons. However, the deprived barrel cortex displayed an increase in SV in layers I and II, and an increase in NA in layer I and in the cortex as a whole, mainly due to an increase in profiles with a convex shape. Layer IV was the least affected by the deprivation. These results point to a net increase, rather than a decrease, of excitatory synapses in the deprived cortex, which could result from a deprivation-induced decrease in the rate of normal synapse loss. This effect occurs specifically in superficial layers, more involved in intracortical and cortico-cortical, rather than thalamo-cortical, processing.


Subject(s)
Functional Laterality/physiology , Neurons/cytology , Sensory Deprivation , Somatosensory Cortex/cytology , Synapses/physiology , Vibrissae/innervation , Animals , Female , Microscopy, Electron, Transmission/methods , Nerve Net/cytology , Nerve Net/physiology , Neurons/ultrastructure , Rats , Rats, Wistar , Synapses/ultrastructure
2.
J Comp Neurol ; 493(4): 538-53, 2005 Dec 26.
Article in English | MEDLINE | ID: mdl-16304625

ABSTRACT

The volume, total neuron number, and number of GABA- and glycine-expressing neurons in the sensory trigeminal nuclei of the adult rat were estimated by stereological methods. The mean volume is 1.38+/-0.13 mm3 (mean+/-SD) for the principal nucleus (Vp), 1.59+/-0.06 for the n. oralis (Vo), 2.63+/-0.34 for the n. interpolaris (Vip), and 3.73+/-0.11 for the n. caudalis (Vc). The total neuron numbers are 31,900+/-2,200 (Vp), 21,100+/-3,300 (Vo), 61,600+/-8,300 (Vip), and 159,100+/-25,300 (Vc). Immunoreactive (-ir) neurons were classified as strongly stained or weakly stained, depending on qualitative criteria, cross-checked by a densitometric analysis. GABA-ir cells are most abundant in Vc, in an increasing rostrocaudal gradient within the nucleus. Lower densities are found in Vip and Vp. The mean total number of strongly labeled GABA-ir neurons ranges between 1,800 in Vp to 7,800 in Vip and 22,900 in Vc, and varies notably between subjects. Glycine-ir neurons are more numerous and display more homogeneous densities in all nuclei. Strongly labeled Gly-ir cells predominate in all nuclei, their total number ranging between 9,400 in Vp to 24,300 in Vip and 34,200 in Vc. A substantial fraction of immunolabeled neurons in all nuclei coexpress GABA and glycine. In general, all neurons strongly immunoreactive for GABA are small, while weakly GABA-ir cells which coexpress Gly are larger. In Vc, one-third of all neurons are immunoreactive: 16.6% of them are single-labeled for GABA and 31.6% are single-labeled for glycine. The remaining 51.8% express GABA and glycine in different combinations, with those showing strong double labeling accounting for 22.6%.


Subject(s)
Glycine/metabolism , Neurons/cytology , Trigeminal Nuclei/cytology , gamma-Aminobutyric Acid/metabolism , Animals , Cell Count , Immunohistochemistry , Male , Neural Pathways/cytology , Neural Pathways/metabolism , Neurons/metabolism , Organ Size , Rats , Rats, Sprague-Dawley , Trigeminal Nuclei/metabolism
3.
Brain Res ; 1025(1-2): 130-8, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15464753

ABSTRACT

We have evaluated quantitatively the whisker barrel field (posteromedial barrel subfield, PMBSF) size in rats raised in standard cages and in rats chronically exposed to an enriched sensory environment. Some animals were subjected to either chronic trimming of the right whiskers, or permanent transection of the right infraorbital nerve. Coronal brain sections were Nissl-stained or reacted for cytochrome oxidase. All, except the IoN-transected rats, showed +/-5% variation in mean PMBSF thickness, with no consistent side bias. In the transected animals, however, the left PMBSF was a significant 3.1% shallower than the right. This denervation-dependent radial shrinkage was consistent with an 11% volume shrinkage of the deafferented PMBSF. The mean volume of the PMBSF ranged between 8.7 and 9.5 mm(3), with moderate interindividual variability (3.5% to 11%). No significant differences in PMBSF volume were found between groups in the right hemisphere, nor in the right vs. left ratios. However, the PMBSF volume was a significant 6.6% larger in the enriched animals without whisker trimming. The PMBSF volume correlated positively with neocortical volume, and with PMBSF cortex thickness, in rats exposed to enriched environment. These data show that: (1) there is a moderate interanimal and lateral variability in the PMBSF volume, with no side preference; (2) exposing young adult rats to an enriched environment induces a discrete but significant enlargement of the PMBSF; (3) the effects of whisker trimming on the contralateral PMBSF, if any, are lost in the interanimal and lateral variability; and (4) such changes reach significance, however, when studied in combination with exposure to an enriched environment.


Subject(s)
Cerebral Cortex/physiology , Environment , Neurons, Afferent/physiology , Vibrissae/physiology , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL