Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 29(6): 599-634, 2018 04.
Article in English | MEDLINE | ID: mdl-29338582

ABSTRACT

The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p < 0.001) higher collagen I content, a lower collagen III and elastin content, and a similar glycosaminoglycans (GAGs) content, in comparison with the NAV, as measured by ECM integrated density. However, the relative thickness of the main load-bearing structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p < 0.05) than in the longitudinal direction. This proved that both tissues were anisotropic. No statistically significant differences in UTS (ultimate tensile strength) values and in calculated bending stiffness values in the longitudinal or transversal direction were found between HP and NAV. Our study confirms that HP has an advantageous ECM biopolymeric structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.


Subject(s)
Aorta , Extracellular Matrix/metabolism , Heart Valves/cytology , Mechanical Phenomena , Pericardium/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Biomechanical Phenomena , Biopolymers/chemistry , Humans , Materials Testing , Tensile Strength
2.
Microsc Microanal ; 16(6): 735-46, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21092357

ABSTRACT

Testate amoebae (TA) are a group of free-living protozoa, important in ecology and paleoecology. Testate amoebae taxonomy is mainly based on the morphological features of the shell, as examined by means of light microscopy or (environmental) scanning electron microscopy (SEM/ESEM). We explored the potential applications of confocal laser scanning microscopy (CLSM), two photon excitation microscopy (TPEM), phase contrast, differential interference contrast (DIC Nomarski), and polarization microscopy to visualize TA shells and inner structures of living cells, which is not possible by SEM or environmental SEM. Images captured by CLSM and TPEM were utilized to create three-dimensional (3D) visualizations and to evaluate biovolume inside the shell by stereological methods, to assess the function of TA in ecosystems. This approach broadens the understanding of TA cell and shell morphology, and inner structures including organelles and endosymbionts, with potential implications in taxonomy and ecophysiology.


Subject(s)
Amoebozoa/classification , Amoebozoa/ultrastructure , Microscopy/methods , Imaging, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...